A Survey of Various High-
Performance Graph Colouring | ;,...,
Algorithms and Related | [AN
Timetabling Issues | L5

Practice

Rhyd Lewis &;\Q

CARDlFF Operational Research Group,
2 LSBT Cardiff School of Mathematics,

PRIFYSGOL Cardiff University
(CAFRDY(D




Talk OQutline P, .

e The graph colouring problem

o Different types of graph and connections to practical
oroblems

e Issues in the graph colouring literature
e Algorithmic comparison

R. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A Wide-Ranging Computational Comparison of High-
Performance Graph Colouring Algorithms”, Computers & Operations Research, DOI:
10.1016/j.cor.2011.08.010.

e Practical issues related to search-space
connectivity: a timetabling example



The graph colouring problem

e Given a simple graph G = (V,E), paint each vertex with a colour
such that

No adjacent vertex has the same colour
The number of different colours used is minimal

e This problem (and derivations of it) are NP-hard/NP-complete

e Inthe above case, the colouring on the right (using 5 colours) is
“optimal”; no solution with fewer colours exists.



Why “Colouring”?

.“
Waol
e Graph colouring originates
from the colouring of maps of - |
countries and counties, which — N R\
can be represented as “planar = . o N\
graphs” el N - ==y
Utah i - llinofs Indiana L Q\“\“‘-ﬁ\:::::
o All planar graphs (and maps) = |
can be coloured using just e e T .
four colours - 2
e However, other types of -

graphs require different

numbers of colours wikipedia)

The 50 US States coloured using four colours (source



Example: The Greedy L&
Algorithm R

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

OOOEOOEOEO®W




Example: The Greedy L&
Algorithm R

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

OOOEOOEOEO®W

\
§




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LOOEOOEOEO®OW




Example: The Greedy L&
Algorithm R

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LEOOEOOEOEO®OW




Example: The Greedy L&
Algorithm R

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LEOOEOEOEOEO®OW




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LOOOOEOOEO®OW




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LOOOOEOEO®OW




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LOOOOEOHOEO®OW




Example: The Greedy L&
Algorithm R

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

LEOOOOOHOHEOOW

_

TN
o S

O

S—




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

OOOEOOEOEO®W




Example: The Greedy
Algorithm

1) Take some permutation of the vertices

2) For each vertex v, assign v it to the first colour
seen to be feasible (i.e. no clash is induced),
opening new colours when necessary

OOOEOOEOEOOW

00 |

9 10

Solution Optimal!!!
(This won't always be

the case and depends
on the ordering in the
permutation)



Talk Motivations P, .

e Many different algorithmic schemes have been developed for graph
colouring.

e However only a limited set of benchmark instances are typically
considered in comparisons (e.g. DIMACS)

o Comparisons between algorithms are also difficult to draw because:
— Different experimental conditions are used
— Often only the good results are reported
— Researchers choose their own cut-off points and only report final (best) solutions
— Algorithms are often tuned to get the best results on each instance

e To alleviate this, we will

— Consider a wide variety of problem instance, both artificial and “real world”

— Compare the algorithms using an unbiased experimental framework with algorithms
treated as black-boxes.



Examples of Artificial Graphs |za =

e Random Graphs

— Start with a graph with |V| vertices and no edges.

— Go through each pair of vertices and add an edge with probability p
— |V| and p are defined by the user

o Flat graphs

— Take |V] vertices and partition them into K equal-sized groups.
— Now add edges between pairs of vertices in different groups with probability p

— Add edges such that the variance in vertex degrees is kept to a minimum (this
makes vertices “look the same”)

e Surprisingly, nearly all algorithmic comparisons in the literature are
concerned with just a small number of artificial graphs.



Graph Colouring in Practical Bl

OR problems

Educational Timetabling: Arrange lessons into
timeslots, avoiding conflicts (e.g. don’t ask a student

to be in 2 places at once)

<+— rooms —»

Lesson
1

Lesson
4

Lesson
5

Lesson
7

Lesson
6

Lesson
10

Lesson
9

Lesson
3

Lesson
8

Lesson
2

Sports League Scheduling: Schedule a series of
matches between teams such that teams play at most
once in every round of the league

Match-vertices

(3,2) (0,1)
(0,2)
(3,0 0,3)
2,3) (1,0
(2,1) 1,2
0 ,3) & Match(1,2)
cannot be
scheduled

inround 0

Round-vertices




Some Useful terms

e A colouring is complete if all vertices are

assigned a colour, else it is partial Partial proper colouring using 5
colours (1 uncoloured)

e A colouring is proper if no pair of
adjacent vertices is assigned the same
colour, else it is improper

e A colouring is feasible if and only if it is
both complete and proper

Complete improper colouring using
e A solution is optimal if it is feasible, and 5 colours (2 clashes)

the number of colours being used is
minimal

e The number of colours used in an optimal
colouring is termed the chromatic
number

Feasible (and optimal) colouring
using 5 colours



Algorithmic Schemes for AN
Graph Colouring =

e Constructive Approaches

— Assign each vertex a colour one-by-one, backtracking if desired/necesarry
— E.g. Greedy (first-fit) algorithm, Dsatur, recursive largest first (RLF).

e Optimisation Based Methods

Feasible-only Search Space
— Explore the space of feasible solutions and attempt to reduce the number of colours.

Space of complete, improper solutions

— Colour all vertices using a fixed number of colours and attempt to eliminate all clashes
— Reduce the number of colours if successful

Space of partial, proper solutions

— Colour all vertices using a fixed number of colours. If no colour is available for a vertex (all
colours would induce a clash), leave it uncoloured. Now attempt to eliminate all
uncoloured vertices.

— Reduce the number of colours if successful
Combinations of these are also possible...



Algorithms Tested =

e TabuCol (Hertz and de Werra, 1987)

— Search the space of complete improper k-colourings using tabu search, attempting to eliminate clashes.
— Decrease k and restart when a colouring with zero clashes is achieved

e PartialCol (Blochliger and Zufferey, 2008)

— Search the space of partial, proper k-colourings using tabu search, attempting to colour uncoloured
vertices while never allowing any clashes

— Decrease k and restart when a complete colouring is achieved
e Hybrid Evolutionary Algorithm (calinier and Hao, 1999)
— Evolve a population of complete, improper k-colourings via a specialised crossover operator
— Locally improve each solution using TabuCol for a fixed number of iterations
e Hill Climbing Approach (Lewis, 2009)
—  Search the space of feasible colourings, attempting to reduce the number of colours being used;
—  Only perform alterations to a solution that maintain feasibility (e.g. Kempe chain moves)

e Backtracking Approach (Brelaz, 1979; Korman, 1979)

— Produce an initial solution using the Dsatur heuristic
— Attempt to improve the solution by systematically reassigning vertices to different colours
— This is a complete algorithm given excess time

e AntCol (Based on Ant Colony Optimisation. Reported in paper but not considered here)



Algorithms Tested =

Search the space of
complete, improper
k-colourings

TabuCol

Hybrid
Evolutionary
Algorithm

Search the space of partial,
proper k-colourings

PartialCol

Backtracking
Approach

Hill Climbing
Algorithm

Search the space of all feasible
colourings, reducing the
number of colours being used



Algorithms Tested

Search the space of
complete, improper
k-colourings

Search the space of partial,
proper k-colourings

Backtracking
Approach

Search the space of all feasible
colourings, reducing the
number of colours being used

IAN
S

‘i

Local Search
Only

Local Search
hybridised
with “large
move
operators”



Experimental Setup =

o 6 different algorithms (+variants); 5000 different problem instances
(“artificial” and “real world”); 40,000+ individual trials.

e Over a decade of computing time consumed in total

o Platform-independent measure of computational effort used (number
of constraint-checks)

e Large cut-off points used in each trial to give some notion of excess
time (5 x 10! checks — at Ieast a few hours for each trial)

oA\ Vs aYealll avVea L S N llu\llf\ I\I“l‘\l’l\l’\

@
Q
—
@
Q.
Q
(0
=2
Q
o
;_
C
C
Pa
(T
v
E
a
c
L
3
cE
S
=
a
E

ANl ~nAvitlairraa +0n
() I-\IgUIILIIIIIb L
iInstances

Computing




colours using Dsatur

Performance on Random

Graphs (|V|=1000)

4DD T T T T
Dsatur ]

SDD L HC —
Bkir——=m—
250

200 i

150

100

50

TabuCo| =—f— M
350 | PagialC
HEA =i

1 085

D-HHHHH

0 01 02 03 04 05 06 07 08 09
P

1

1 09

1 0.85

1 08

1 0.75

0.7

colours (proportion compared to Dsatur)

Clearly, methods that
explore infeasible
search-spaces (partial-
proper or complete-
improper) are more
successful
Feasible-only space
(HC) features lower

connectivity and brings
worse results

Backtracking algorithm
not competitive

HEA's combination of

IAN
LS

LS and global operators

is favourable



Performance on Random %g
Graphs (|V|=500) P

e Clearly, methods that
explore infeasible
———————— search-spaces (partial-
Dsatur 1 1 1

200 |  TabuCol =——t— proper or complete-
Partial Col —w— improper) are more
180 T HEA 1 095
successful
160 ¢ i

Bktr —a— e Feasible-only space

220

5
®
(i
. 9
=] _ | g
§ M0 | 09 ® (HC) features lower
(] _ .. .
> 120 | E connectivity and brings
2 0 L ] 1085 ¢ worse results
0 o
3 sl § e Backtracking algorithm
8 . 108 &  notcompetitive
5 o HEA's combination of
T 1075 3 LS and global operators
20 ¢ is favourable
0 0.r

0 01 02 03 04 05 06 07 08 09 1
P



Performance on Random

Graphs (|V|=250)

120

100 r

colours using Dsatur

20

80 r

60 r

40 |

| Dsétur
TabuCaol

PartialCol
HEA

HC

Bktr

—/
T
T
.

03 04 05

P

oe 07 08 09

1

1 085

1 09

41 0.85

1 08

1 0.75

0.7

colours (proportion compared to Dsatur)

Clearly, methods that
explore infeasible
search-spaces (partial-
proper or complete-
improper) are more
successful
Feasible-only space
(HC) features lower

connectivity and brings
worse results

Backtracking algorithm
not competitive

HEA's combination of

IAN
LS

LS and global operators

is favourable



Performance on Random

Graphs over time (|V|=1000)

56

54 |

52 r

colours

48

46

44 L

190

180 |

colours

170

160

1650 ¢

50

n—N 20

P=9zo TabuCol
BartialCol
HEA
HC
Bktr
0 1e+011 2e+011 3e+011 4e+011 5e+01
checks
pn=0.75 ,
TFabuCol
PartialCol
HEA
HC
Bktr
& —
e —
0 1e+011 2e+011 3e+011 4e+011 5e+01

checks

p=0.5 ‘
! TabuCol
PartialCol
110 HEA
HC
Bktr
105
<
_g 100
8
a5
90
0 1e+011 2e+011 3e+011 4e+011 5e+01
checks

Over time, local-search based methods
make the quickest improvements

However, given enough time the HEA

returns better results

Hill Climbing method and Backtracking

are again inferior



Performance on Flat Graphs s,

colours at cut-off

V| = 500, k = 10. (50 v’s-per-colour)

TabuCol ——t—

18 L PartialCol ===
HEA —a—
HC
T Bktr —=—
16
=
2
=]
(5]
L]
<
3
=]
8

0.05 0.1 0.15 02

V| =500, k =100. (5 v’s-perp-colour)

114 'i'abuCo'I —_——
[ artialCol —w—
HEA —@—
112 + HC
Bktr —=—
110
L
108 +
106 +
104 +
102 +
100 &

076 078 08 082 084 086 088 09 092 094 096
P

VI

colours at cut-off

84 |

62

60 |

58 |

56

54 |

52 |

50

=500, k =50. (10 v’'s-per-colour)

TabuCoI ‘
PartialCol
HEA
HC
Bktr

04

045 05 0.55 06 0.65 0.7 0.75 08

e Experiments with flat graphs within the
phase transition regions reveal similar
characteristics to random graphs



Analysis of Results . A

e Clearly, better results are gained by algorithms that explore spaces of
infeasible colourings (i.e. TabuCol, PartialCol, HEA)

e HEA, which also involves a global search operator (recombination) is
superior to local search on its own in some cases.

e In contrast, the feasible-only search space is more disconnected, thus
improvements are more difficult to make

e However, random and flat graphs are very particular types of graphs that
feature high levels of vertex-degree homogeneity
For example, degrees of vertices in random graphs are modelled by
D ~ B(|JV| - 1, p), giving low variance for high and low p-values;
For the flat graphs, degree variance is also kept deliberately low;
In the considered instances, the degree coefficient of variation (CV = SD / mean x
100) is always less than 29%

e Do the same performance features hold for other types of graph?



Some real world timetabling

Degree | Degree
mean CV

INStances (carter 1996)

|V| | Density | Degree
(min;med;max)
81

hec-s-92 0.415 9; 33; 62

sta-f-83 139 0.143 7; 16; 61

yor-f-83 181 0.287 7;51; 117
ute-s-92 184 0.084 2;13; 58

ear-f-83 190 0.266 4; 45; 134
tre-s-92 261 0.18 0; 45; 145
Ise-f-91 381 0.062 0; 16; 134
kfu-s-93 461 0.055 0; 18; 247
rye-s-93 486 0.075 0; 24; 274
car-f-92 543 0.138 0; 64; 381
uta-s-92 622 0.125 1; 65; 303
car-s-91 682 0.128 0; 77,472
pur-s-93 2419  0.029 0; 47; 857

33.7
19.9
52

15.5
50.5
47

23.8
25.6
36.5
74.8
78

87.4
71.3

36.30%
67.40%
35.20%
69.10%
56.10%
59.60%
93.20%
120.00%
111.80%
75.30%
73.70%
70.90%
129.50%

IAN

e “Consider the instance kfu-s-93, by no means the hardest or largest in the set. It
involves 5349 students sitting 461 exams, ideally fitted into 20 timeslots. The problem
contains 2 cliques of size 19 and huge numbers of smaller ones. There are 16 exams
that clash with over 100 others.” (Ross et al. 2003).



Performance of Algorithms on
the 13 timetabling Instances

e Here, backtracking Number of colours at cut-off point (mean
is able to produce of 50 runs on each instance)

competitive results 0
(more heuristic
information

available) 40 -

e The methods that
combine LS and
global operators 20 -
are the most

. 10 -
consistent
e Methods based 0 -
solely on LS S >SS S SO O
ql\,- %/)) . %f)) . q’». %f)) . qr\/. q’». qu . qf)) . ql». q’». q’\" qf)) .
produce R I S S S SV S S S G
disappointing FLFIECTELEE R

results... V|

v

IAN
S

B HEA
B Hill Climbing
I Backtracking

. Davdialral
rdal lidivCul

B TabuCol



Performance of Algorithms on %E
the 13 timetabling Instances | gs =

Average rank (compared to other algorithms) across all random and flat graphs

HEA TabuCol PartialCol AntCol HC

HC HEA Bktr PartialCol AntCol TabuCol

Average rank (compared to other algorithms) across the 13 timetabling graphs

BEST WORST >



Performance of Algorithms on | &N
the 13 timetabling Instances =

e The higher degree-
variance in timetabling
graphs tends to
Increase the variance
In cost

e This implies a more
spiky cost landscape
that the LS techniques
on their own seem to
have difficulty coping
with

Cost Change

354

304

254

20+

154

10+

Cost change distributions for a random

graph and a timetabling graph with similar

densities (0.15 and 0.138 resp.)

000

—

o

(e]e]

Random
TabucCol

Timetable

Random

Timetable
PartialCol



Sports Scheduling

Sports scheduling problem with 4 teams

playing each other twice (n=4: m=2)

Match-vertices

(3,2 0,1)
(0,2)
(3,0) —a— 0,3)
2,3) 1,0
(2,2) 1,2
0 1,3) Match (1,2)

cannot be
scheduled
in round O

Round-vertices

Given n teams, arrange matches so
that each team plays each other m
times in m(n — 1) rounds

Represented as a graph by
introducing ¥amn(n — 1) vertices, one
for each match

Edges are imposed between matches
that cannot be played simultaneously

Extra vertices can also be added to
add further constraints concerning the
rounds

In our case, edges are added
between match- and round-vertices
with probability p



colours at cut-off

Sports Scheduling

ol
St
Problem using n=30, m=2, (|V| = Problem using n=30, m=2, (JV| = 928)
928) with chromatic number = 58 with unknown chromatic number
TabuCoi D I I I TabuCoi B I I I
95 - PartialCol —w— 1 95 - PartialCol —e—
HEA —a— HEA —a—
a0 | HC ] a0 | HC

Bktr —=—

Bktr —=—

85 r 85 r

80 r 80 r

75 r 75 ¢

colours at cut-off

70 ¢ 70 ¢

65 r 65

60 r

60 r

0 02 04 086 0.8 1 0 02 04 086 08 1
p p

Increases to p also lead to increases in degree variance (and
coefficient of variation)

Methods based solely on LS clearly perform poorly when p is high
These issues are alleviated when using a global operator (as with HEA)



Socilal Networks

o Take all the pupils from a
school and add edges
between those who are
friends

e Group children so they are ‘
away (or with) their friends .

Number of colours on 20 different

[N
N

I networks (mean of 50 runs)

e Such graphs appear to be
easy to colour optimally
(sparse, low degrees, regular
structures)

Num. colours

O O NN I AN MO0 W W O W WwowMN~N O O O
D0 N NN OO S O OO0 N 0 < O AN 0 N < 10

VI

H HEA

B Hill Climbing
M PartialCol

B TabuCol

m Backtracking



ES
General Thoughts... -

Has the field of graph colouring been too focussed on “artificial”
Instances?

[

}g

Graph-structure seems to have a large effect on algorithm performance.
However this is often hard to assess

Methods relying solely on local search are not always sufficient (e.g.
graphs with spiky landscapes)

HEA generally the best approach from our trials
Recombination operator exploits the problem structure
Combination of LS and global operators

Search space connectivity is higher than the alternative “feasible-only
space”
Average ranking over all instance classes (equally weighted

PARTIALCOL TABUCOL HC ANTCOL




<+«—I'ooms —»

Case Study: Post Enrolment-
based course timetabling

e Used in the International Timetabling
Competition 2007

o The problem features a number of
“hard” (mandatory) constraints and
“soft” (optional) constraints.

e The problem is related to graph
colouring, though room availability in
each timesilot is also important
(amongst other things).

Lesson |Lesson Lesson . . .
1 4 7 e A maximum matching algorithm can
Lesson |Lesson |Lesson be used to determine whether all
> ° ° vertices in a particular colour class can
Lesson |Lesson |Lesson Lesson . ]
10 |2 5 6 be assigned to acceptable rooms in a

timeslot.



Solution Strategy

e First, produce a feasible solution
(one that obeys all hard
constraints)

e Next, search the space of
feasible solutions attempting to
eliminate soft constraint
violations

\— _/
~
Space of all feasible solutions




Solution Strategy

O

Q optimal

Infeasible Region

—

Y

Space of all feasible solutions

@Fﬁm

First, produce a feasible solution
(one that obeys all hard
constraints)

Next, search the space of
feasible solutions attempting to
eliminate soft constraint
violations

Depending on the problem
and method of exploration, the
“feasible-only” search space
may feature low levels of
connectivity (or could be
disconnected)



Solution Strategy

Q optimal

Infeasible Region

O

—

Y
Space of all feasible solutions

ﬂﬁ
NZ

i

{I
b

First, produce a feasible solution
(one that obeys all hard
constraints)

Next, search the space of
feasible solutions attempting to
eliminate soft constraint
violations

Depending on the problem and
method of exploration, the
“feasible-only” search space
may feature low levels of
connedctivity (or could be
disconnected)

It thus makes sense to
Increase this connectivity if
possible



<+«—I'ooms —»

Simple Neighbourhood search | 2N
algorithm for timetabling =

Lesson
1

Lesson
4

Lesson
7

Lesson
9

Lesson
3

Lesson
8

Lesson
10

on
2

Lesson
5

Lesson
6

Based on Simulated Annealing, run for a
fixed time limit (300s)

Neighbourhood Operator

Choose a random lesson (vertex) v and try to
move it to a new timeslot (colour) t

Option 1: Inspect each empty room in timeslot t, if
any are suitable for v such that feasibility is
maintained, perform the move; else reject

Option 2: As above, but also perform the
maximum matching algorithm if a suitable room
was not identified.

We can also perform “swaps” in the same manner
Clearly option 2 allows more feasible
moves to be identified, bringing higher
search space connectivity

However, repeated applications of a
(polynomially-bounded) maximum
matching algorithm still adds expense



Reduction in Cost (300s)

Search Space Connectivity Eg
and Timetabling Problems =

Dot VIR

Scatter-plot comparing search-space ° Option 1 (no maximum
connectivity (modelled as the proportion of

moves seen to retain feasibility) vs the overall matching algorithm)
reduction in cost 24 benchmark instances (of

1 8 O#17
O #5 0 47

ont oms varying size and

09 #?5#16 O #11 O O 7 : n

ot constrained-ness” were
0.8 @ H#240 46 . "
. considered
' 0 #20 .
06 o m Clearly there is a strong
0s positive correlation between
04 |0 m “connectivity” and the
0a |O% " amount the solution is

O #22 . .
02 — ultimately improved
o1 D#10 0400+
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Proportion of Moves Maintaining Feasibility



Search Space Connectivity Eg
and Timetabling Problems -

=% —
St et
Scatter-plot comparing search-space P Option ? (W/ maximum

connectivity (modelled as the proportion of ] ]
moves seen to retain feasibility) vs the overall matchlng algorlthm)
reduction in cost

1 O+#8

24 benchmark instances (of
iy L .. Yarylng size and ”
9y o 9412 o constrained-ness” were
: ® #20 . 7
considered

Clearly there is a strong

on positive correlation between
; “connectivity” and the

® #22 . .

amount the solution is

ultimately improved

@17
® #13 ® #14 ®#s o

o©
3

® #23

o o o
e 4] o)}

Reduction in Cost (300s)

o
w

©
)

® <400
® 400+

o
=

o

o

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Proportion of Moves Maintaining Feasibility



Search Space Connectivity AN
and Timetabling Problems =

Daet

Scatter-plgt comparing search-space | e Com parison
connectivity (modelled as the proportion of

moves seen to retain feasibility) vs the overall The use of the maximum
reduction in cost matching algorithm improves
' T oe o o - the connectivity of the
02 % o » o® search space
0.8 (o

o
3

algorithm to reduce the cost
significantly more than the
(/. first option

©<400 (w/ no max match)

/ Clearly, this allows the

o
o

o
3

©
~

Reduction in Cost (300s)

o
w

j 0400+ (w/ no max match)

® <400 (w/ max match)

o
()

® 400+ (w/ max match)

o
=

o

o

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Proportion of Moves Maintaining Feasibility



Further Points on Timetabling | &N
and Related Problems P

Search space connectivity can be improved by exploiting
underlying problem structure
Maximum matching algorithm
Kempe-chain and S-chain interchanges
Ejection-chain and optimal-reassignment algorithms (Hungarian, Auction
algorithms)
Are there any “useful” recombination-type operators that can also
maintain feasibility in timetabling?
Comparison of algorithms is a problem.

Competitions can be useful for generating new ideas without the fear of “are
these ideas publishable??!1?”

On the other hand, are we interested in understanding algorithm behaviour, or
do we just want to beat other algorithms?



LA
LS
References... P,

St Sl

Carter’s Timetabling Instances ftp://ftp.mie.utoronto.ca/pub/carter/testprob/all_file.zip
Dimacs Graph Colouring Instances http://dimacs.rutgers.edu/challenges/
International Timetabling Competition http://www.cs.qub.ac.uk/i1tc2007/

I. Blochliger and N. Zufferey.”A graph coloring heuristic using partial solutions and a reactive tabu scheme.” Computers
and Operations Research, 35:960--975, 2008.

D. Brelaz. “New methods to color the vertices of a graph.” Commun. ACM, 22(4):251--256, 1979.

P. Galinier and J-K. Hao. “Hybrid evolutionary algorithms for graph coloring.” Journal of Combinatorial Optimization,
3:379--397, 1999.

A. Hertz and D. de Werra. “Using tabu search techniques for graph coloring.” Computing, 39(4):345--351, 1987.

J. Moody and D. White. “Structural cohesion and embeddedness: A hierarchical concept of social groups.” American
Sociological Review, 68(1):103--127, 2003.

S. Korman. Combinatorial Optimization. The Graph-Colouring Problem, pages 211--235. Wiley, New York, 1979.

R. Lewis. “A general-purpose hill-climbing method for order independent minimum grouping problems: A case study in
graph colouring and bin packing.” Computers and Operations Research, 36(7):2295--2310, 2009.

R. Lewis and J. Thompson. “On the application of graph colouring techniques in round-robin sports scheduling.”
Computers and Operations Research, 38(1):190--204, 2010.

R. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A Wide-Ranging Computational Comparison of High-
Performance Graph Colouring Algorithms”, Computers & Operations Research DOI: 10.1016/j.cor.2011.08.010.

J. Thompson and K. Dowsland. “An improved ant colony optimisation heuristic for graph colouring.” Discrete Applied
Mathematics, 156:313--324, 2008.



