
A Survey of Various High-y g
Performance Graph Colouring

Algorithms and RelatedAlgorithms and Related
Timetabling Issues

Rhyd LewisRhyd Lewis

Operational Research Group,p p,
Cardiff School of Mathematics,
Cardiff University

Talk Outline
The graph colouring problem
Different types of graph and connections to practical yp g p p
problems
Issues in the graph colouring literatureIssues in the graph colouring literature
Algorithmic comparison

R. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A Wide-Ranging Computational Comparison of High-
Performance Graph Colouring Algorithms” Computers & Operations Research DOI:Performance Graph Colouring Algorithms , Computers & Operations Research, DOI:
10.1016/j.cor.2011.08.010.

Practical issues related to search-space
ti it ti t bli lconnectivity: a timetabling example

The graph colouring problem
Given a simple graph G = (V,E), paint each vertex with a colour
such that

No adjacent vertex has the same colourNo adjacent vertex has the same colour
The number of different colours used is minimal

This problem (and derivations of it) are NP-hard/NP-complete
1 2

3 4 5

1 2

3 4 5

6 7 8 6 7 8

In the above case, the colouring on the right (using 5 colours) is
9 10 9 10

“optimal”: no solution with fewer colours exists.

Why “Colouring”?
Graph colouring originates
from the colouring of maps of
countries and counties whichcountries and counties, which
can be represented as “planar
graphs”
All l h (d)All planar graphs (and maps)
can be coloured using just
four colours
However, other types of
graphs require different
numbers of colours The 50 US States coloured using four colours (source

iki di)numbers of colours wikipedia)

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

…

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 …

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 …3

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 4 …3

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 4 6 …3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 4 6 7 …3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 4 6 7

5

…3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

1 3 4 6 7

5 2

…3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

8

1 3 4 6 7

5 2

…3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

89

1 3 4 6 7

5 2

…3 6

Example: The Greedy
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour

seen to be feasible (i.e. no clash is induced),
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

89 Solution Optimal!!!

1 3 4 6 7

5 2 10

p
(This won’t always be

the case and depends
on the ordering in the
permutation)…3 6 permutation)

Talk Motivations
Many different algorithmic schemes have been developed for graph
colouring.
However only a limited set of benchmark instances are typicallyHowever only a limited set of benchmark instances are typically
considered in comparisons (e.g. DIMACS)
Comparisons between algorithms are also difficult to draw because:

− Different experimental conditions are used
− Often only the good results are reported
− Researchers choose their own cut-off points and only report final (best) solutions
− Algorithms are often tuned to get the best results on each instance

To alleviate this, we will
− Consider a wide variety of problem instance, both artificial and “real world”y
− Compare the algorithms using an unbiased experimental framework with algorithms

treated as black-boxes.

Examples of Artificial Graphs
Random Graphs

− Start with a graph with |V| vertices and no edges.
− Go through each pair of vertices and add an edge with probability pGo through each pair of vertices and add an edge with probability p
− |V| and p are defined by the user

Flat graphsFlat graphs
− Take |V| vertices and partition them into K equal-sized groups.
− Now add edges between pairs of vertices in different groups with probability p
− Add edges such that the variance in vertex degrees is kept to a minimum (this

makes vertices “look the same”)

SSurprisingly, nearly all algorithmic comparisons in the literature are
concerned with just a small number of artificial graphs.

Graph Colouring in Practical
OR problems

Educational Timetabling: Arrange lessons into Sports League Scheduling: Schedule a series of
timeslots, avoiding conflicts (e.g. don’t ask a student
to be in 2 places at once)

matches between teams such that teams play at most
once in every round of the league

1 2

Match-vertices

(0,1)
(0,2)

(3,2)
(3,1)

3 4 5

6 7 8
1 2

(1,0)

(0,3)(3,0)

(2,3)

7 8

9 10
3

4 5

7 8

Match (1,2)
cannot be
scheduled
in round 0

(1,2)(2,1)
(2,0) (1,3)

timeslots

6
7 8

9 10

r5

r0

r1

r4 r2

in round 0

Round-vertices

1 2 3 4 5
1 Lesson

1
Lesson
4

Lesson
5

Lesson
7

Lesson
6

2 Lesson
10

Lesson
9

Lesson
3

Lesson
8

3 Lesson

ro
om

s

r3

3 Lesson
2

Some Useful terms ?

A colouring is complete if all vertices are
assigned a colour, else it is partial Partial proper colouring using 5

colours (1 uncoloured)

A colouring is proper if no pair of
adjacent vertices is assigned the same
colour, else it is improper

A colouring is feasible if and only if it is
both complete and proper

C l t i l i i
A solution is optimal if it is feasible, and
the number of colours being used is
minimal

Complete improper colouring using
5 colours (2 clashes)

minimal

The number of colours used in an optimal
colouring is termed the chromatic g
number Feasible (and optimal) colouring

using 5 colours

Algorithmic Schemes for
Graph Colouring

Constructive Approaches
− Assign each vertex a colour one-by-one, backtracking if desired/necesarry
− E g Greedy (first-fit) algorithm Dsatur recursive largest first (RLF)E.g. Greedy (first fit) algorithm, Dsatur, recursive largest first (RLF).

Optimisation Based Methods
Feasible-only Search Space
− Explore the space of feasible solutions and attempt to reduce the number of colours.

Space of complete, improper solutions
− Colour all vertices using a fixed number of colours and attempt to eliminate all clashes
− Reduce the number of colours if successful

Space of partial, proper solutions
− Colour all vertices using a fixed number of colours. If no colour is available for a vertex (all

l ld i d l h) l it l d N tt t t li i t llcolours would induce a clash), leave it uncoloured. Now attempt to eliminate all
uncoloured vertices.

− Reduce the number of colours if successful

Combinations of these are also possibleCombinations of these are also possible…

Algorithms Tested
TabuCol (Hertz and de Werra, 1987)

− Search the space of complete improper k-colourings using tabu search, attempting to eliminate clashes.
− Decrease k and restart when a colouring with zero clashes is achieved

PartialCol (Blochliger and Zufferey, 2008)
− Search the space of partial, proper k-colourings using tabu search, attempting to colour uncoloured

vertices while never allowing any clashes
− Decrease k and restart when a complete colouring is achieved

Hybrid Evolutionary Algorithm (Galinier and Hao, 1999)
− Evolve a population of complete, improper k-colourings via a specialised crossover operator
− Locally improve each solution using TabuCol for a fixed number of iterations

Hill Climbing Approach (Lewis, 2009)
− Search the space of feasible colourings, attempting to reduce the number of colours being used;
− Only perform alterations to a solution that maintain feasibility (e.g. Kempe chain moves)

Backtracking Approach (B l 1979 K 1979)Backtracking Approach (Brelaz, 1979; Korman, 1979)
− Produce an initial solution using the Dsatur heuristic
− Attempt to improve the solution by systematically reassigning vertices to different colours
− This is a complete algorithm given excess time

AntCol (Based on Ant Colony Optimisation. Reported in paper but not considered here)

Algorithms Tested
Search the space of
complete, improper
k-colourings

Search the space of partial,
proper k-colourings

TabuColTabuCol PartialColPartialCol

HybridHybrid

Backtracking
Approach
Backtracking
Approach

Hybrid
Evolutionary
Algorithm

Hybrid
Evolutionary
Algorithm

Hill ClimbingHill ClimbingHill Climbing
Algorithm
Hill Climbing
Algorithm

Search the space of all feasible
l i d i thcolourings, reducing the

number of colours being used

Algorithms Tested
Search the space of
complete, improper
k-colourings

Local Search

Search the space of partial,
proper k-colourings

TabuColTabuCol PartialColPartialCol
Local Search
Only

HybridHybrid

Backtracking
Approach
Backtracking
Approach

Hybrid
Evolutionary
Algorithm

Hybrid
Evolutionary
Algorithm

Hill ClimbingHill Climbing

Local Search
hybridised
with “large Hill Climbing

Algorithm
Hill Climbing
Algorithm

move
operators”

Search the space of all feasible
l i d i thcolourings, reducing the

number of colours being used

Experimental Setup
6 different algorithms (+variants); 5000 different problem instances
(“artificial” and “real world”); 40,000+ individual trials.
Over a decade of computing time consumed in totalOver a decade of computing time consumed in total
Platform-independent measure of computational effort used (number
of constraint-checks)
Large cut-off points used in each trial to give some notion of excess
time (5 x 1011 checks – at least a few hours for each trial)
Algorithms treated as black boxes: no “manual tuning” for differentAlgorithms treated as black-boxes: no manual tuning for different
instances

Performance on Random
Graphs (|V|=1000)

Clearly, methods that
explore infeasible
search-spaces (partial-p (p
proper or complete-
improper) are more
successful
Feasible-only space
(HC) features lower
connectivity and brings
worse results
Backtracking algorithm
not competitivep
HEA’s combination of
LS and global operators
is favourable

Performance on Random
Graphs (|V|=500)

Clearly, methods that
explore infeasible
search-spaces (partial-p (p
proper or complete-
improper) are more
successful
Feasible-only space
(HC) features lower
connectivity and brings
worse results
Backtracking algorithm
not competitivep
HEA’s combination of
LS and global operators
is favourable

Performance on Random
Graphs (|V|=250)

Clearly, methods that
explore infeasible
search-spaces (partial-p (p
proper or complete-
improper) are more
successful
Feasible-only space
(HC) features lower
connectivity and brings
worse results
Backtracking algorithm
not competitivep
HEA’s combination of
LS and global operators
is favourable

Performance on Random
Graphs over time (|V|=1000)

p=0.25
p=0.5

p=0.75p

Over time, local-search based methods
make the quickest improvements
However, given enough time the HEA
returns better results
Hill Climbing method and Backtracking g g
are again inferior

Performance on Flat Graphs
|V| = 500, k = 10. (50 v’s-per-colour)

|V| = 500, k = 50. (10 v’s-per-colour)

|V| = 500, k = 100. (5 v’s-per-colour)| | , (p)

Experiments with flat graphs within the
phase transition regions reveal similarphase transition regions reveal similar
characteristics to random graphs

Analysis of Results
Clearly, better results are gained by algorithms that explore spaces of
infeasible colourings (i.e. TabuCol, PartialCol, HEA)
HEA, which also involves a global search operator (recombination) isHEA, which also involves a global search operator (recombination) is
superior to local search on its own in some cases.
In contrast, the feasible-only search space is more disconnected, thus
improvements are more difficult to makeimprovements are more difficult to make
However, random and flat graphs are very particular types of graphs that
feature high levels of vertex-degree homogeneity

For example degrees of vertices in random graphs are modelled byFor example, degrees of vertices in random graphs are modelled by
D ~ B(|V| – 1, p), giving low variance for high and low p-values;
For the flat graphs, degree variance is also kept deliberately low;
In the considered instances the degree coefficient of variation (CV SD / mean xIn the considered instances, the degree coefficient of variation (CV = SD / mean x
100) is always less than 29%

Do the same performance features hold for other types of graph?

Some real world timetabling
instances (Carter 1996)
Name |V| Density Degree Degree Degree

(min;med;max) mean CV

hec-s-92 81 0 415 9; 33; 62 33 7 36 30%hec-s-92 81 0.415 9; 33; 62 33.7 36.30%
sta-f-83 139 0.143 7; 16; 61 19.9 67.40%
yor-f-83 181 0.287 7; 51; 117 52 35.20%
ute-s-92 184 0.084 2; 13; 58 15.5 69.10%
ear f 83 190 0 266 4; 45; 134 50 5 56 10%ear-f-83 190 0.266 4; 45; 134 50.5 56.10%
tre-s-92 261 0.18 0; 45; 145 47 59.60%
lse-f-91 381 0.062 0; 16; 134 23.8 93.20%
kfu-s-93 461 0.055 0; 18; 247 25.6 120.00%

93 486 0 075 0 24 274 36 5 111 80%rye-s-93 486 0.075 0; 24; 274 36.5 111.80%
car-f-92 543 0.138 0; 64; 381 74.8 75.30%
uta-s-92 622 0.125 1; 65; 303 78 73.70%
car-s-91 682 0.128 0; 77; 472 87.4 70.90%
pur-s-93 2419 0.029 0; 47; 857 71.3 129.50%

“Consider the instance kfu-s-93, by no means the hardest or largest in the set. It
involves 5349 students sitting 461 exams, ideally fitted into 20 timeslots. The probleminvolves 5349 students sitting 461 exams, ideally fitted into 20 timeslots. The problem
contains 2 cliques of size 19 and huge numbers of smaller ones. There are 16 exams
that clash with over 100 others.” (Ross et al. 2003).

Performance of Algorithms on
the 13 timetabling Instances

Here, backtracking
is able to produce
competitive results 60

Number of colours at cut-off point (mean
of 50 runs on each instance)

p
(more heuristic
information
available) 40

50

HEA

The methods that
combine LS and
global operators 20

30 Hill Climbing

Backtracking

PartialCol
are the most
consistent
Methods based 0

10

PartialCol

TabuCol

solely on LS
produce
disappointing
results… |V|

Performance of Algorithms on
the 13 timetabling Instances

Average rank (compared to other algorithms) across all random and flat graphs

HEA TabuCol PartialCol AntCol HC Bktr

1 2 3 4 5 6

HEA TabuCol PartialCol AntCol HC Bktr

1 2 3 4 5 6

HEAHC Bktr PartialCol AntCol TabuCol

1 2 3 4 5 6

Average rank (compared to other algorithms) across the 13 timetabling graphs

BEST WORST

Performance of Algorithms on
the 13 timetabling Instances

The higher degree-

Cost change distributions for a random
graph and a timetabling graph with similar
densities (0.15 and 0.138 resp.)

variance in timetabling
graphs tends to
increase the variance

35

30

in cost

Thi i li

25

20
C

ha
ng

e

This implies a more
spiky cost landscape
that the LS techniques

15

10

5

C
os

t C

on their own seem to
have difficulty coping
with CarterRandomCarterRandom

5

0

Random Timetable Random Timetable

TabuCol PartialCol

Sports Scheduling
Sports scheduling problem with 4 teams

Given n teams, arrange matches so
that each team plays each other m
times in m(n – 1) rounds

Match-vertices

(0 1)(3 2)

Sports scheduling problem with 4 teams
playing each other twice (n=4; m=2)

times in m(n 1) rounds
Represented as a graph by
introducing ½mn(n – 1) vertices, one
for each match

(0,1)
(0,2)

(0,3)(3,0)

(3,2)
(3,1)

for each match
Edges are imposed between matches
that cannot be played simultaneously
Extra vertices can also be added to

(1,0)

(1,2)

(2,3)

(2,1) Extra vertices can also be added to
add further constraints concerning the
rounds
I d dd d

r0

Match (1,2)
cannot be
scheduled
in round 0

(,)
(2,0) (1,3)

In our case, edges are added
between match- and round-vertices
with probability p

r5

0

r1

r4 r2

Round-vertices

r3

Sports Scheduling
Problem using n=30 m=2 (|V| = Problem using n=30 m=2 (|V| = 928)Problem using n=30, m=2, (|V| =
928) with chromatic number = 58

Problem using n=30, m=2, (|V| = 928)
with unknown chromatic number

Increases to p also lead to increases in degree variance (and
coefficient of variation)
Methods based solely on LS clearly perform poorly when p is highMethods based solely on LS clearly perform poorly when p is high
These issues are alleviated when using a global operator (as with HEA)

Social Networks
Take all the pupils from a
school and add edges
between those who arebetween those who are
friends

Group children so they are
away (or with) their friends Pajek

12
Number of colours on 20 different

t k (f 50)
Such graphs appear to be
easy to colour optimally
(l d l

8

10

12

HEA
ou

rs

networks (mean of 50 runs)

(sparse, low degrees, regular
structures)

2

4

6
Hill Climbing

PartialCol

TabuCol

Backtracking

N
um

. c
ol

o

0

2

29
1

38
0

42
6

45
7

49
5

54
2

56
3

56
9

57
8

58
6

62
6

68
9

74
6

79
5

82
8

87
7

10
89

12
29

12
46

22
50

|V|

General Thoughts…
Has the field of graph colouring been too focussed on “artificial” g p g
instances?

Graph-structure seems to have a large effect on algorithm performance.
H thi i ft h d tHowever this is often hard to assess

Methods relying solely on local search are not always sufficient (e.g.
graphs with spiky landscapes)graphs with spiky landscapes)

HEA generally the best approach from our trials
Recombination operator exploits the problem structurep p p
Combination of LS and global operators
Search space connectivity is higher than the alternative “feasible-only
space”

HEA PARTIALCOL TABUCOL HC ANTCOL BT

p
Average ranking over all instance classes (equally weighted)

1 2 3 4 5 6

Case Study: Post Enrolment-
based course timetabling

Used in the International Timetabling
Competition 2007
The problem features a number of

1 2

3 4 5

The problem features a number of
“hard” (mandatory) constraints and
“soft” (optional) constraints.
The problem is related to graph

6 7 8

9 10 The problem is related to graph
colouring, though room availability in
each timeslot is also important
(amongst other things).1 2 3 4 5

timeslots

(amongst other things).
A maximum matching algorithm can
be used to determine whether all
vertices in a particular colour class can

1 Lesson
1

Lesson
4

Lesson
7

2 Lesson
9

Lesson
3

Lesson
8ro

om
s

vertices in a particular colour class can
be assigned to acceptable rooms in a
timeslot.

3 Lesson
10

Lesson
2

Lesson
5

Lesson
6

Solution Strategy
Exploration via neighbourhood ops First, produce a feasible solution

(one that obeys all hard
constraints)

Initial
feasible

)
Next, search the space of
feasible solutions attempting to
eliminate soft constraint

solution Final feasible
solution (best
found)

violations

Space of all feasible solutions

Solution Strategy
optimal First, produce a feasible solution

(one that obeys all hard
constraints))
Next, search the space of
feasible solutions attempting to
eliminate soft constraint

Infeasible Region

violations
Depending on the problem
and method of exploration, the

Space of all feasible solutions

and method of exploration, the
“feasible-only” search space
may feature low levels of
connectivity (or could be y (
disconnected)

Solution Strategy
optimal First, produce a feasible solution

(one that obeys all hard
constraints)

Infeasible Region
)

Next, search the space of
feasible solutions attempting to
eliminate soft constraint
violations
Depending on the problem and
method of exploration, the

Space of all feasible solutions

method of exploration, the
“feasible-only” search space
may feature low levels of
connectivity (or could be y (
disconnected)
It thus makes sense to
increase this connectivity ifincrease this connectivity if
possible

Simple Neighbourhood search
algorithm for timetabling

Based on Simulated Annealing, run for a
fixed time limit (300s)
Neighbourhood Operator

1 2

3 4 5

Choose a random lesson (vertex) v and try to
move it to a new timeslot (colour) t
Option 1: Inspect each empty room in timeslot t, if
any are suitable for v such that feasibility is

6 7 8

9 10
any are suitable for v such that feasibility is
maintained, perform the move; else reject
Option 2: As above, but also perform the
maximum matching algorithm if a suitable room
was not identified

1 2 3 4 5
timeslots

was not identified.
We can also perform “swaps” in the same manner

Clearly option 2 allows more feasible
moves to be identified bringing higher

1 Lesson
1

Lesson
4

Lesson
7

2 Lesson
9

Lesson
3

Lesson
8ro

om
s

moves to be identified, bringing higher
search space connectivity
However, repeated applications of a
(polynomially bounded) maximum

3 Lesson
10

Lesson
2

Lesson
5

Lesson
6

(polynomially-bounded) maximum
matching algorithm still adds expense

Search Space Connectivity
and Timetabling Problems

Option 1 (no maximum
matching algorithm)

24 benchmark instances (of

Scatter-plot comparing search-space
connectivity (modelled as the proportion of
moves seen to retain feasibility) vs the overall
reduction in cost

#17

#3
#4

#7
#8

#11
#12
#15

#16

#18 #5

#6
#13

#14

#24#210.8

0.9

1
24 benchmark instances (of
varying size and
“constrained-ness” were
considered”

reduction in cost

#20

#23

0.5

0.6

0.7

on
 in

 C
os

t (
30

0s
) considered

Clearly there is a strong
positive correlation between
“connectivity” and the

#19

#1

#2
#9

#10

#22

0.2

0.3

0.4

R
ed

uc
tio

<400
400+

connectivity and the
amount the solution is
ultimately improved

0

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Proportion of Moves Maintaining Feasibility

400+

Search Space Connectivity
and Timetabling Problems

Option 2 (w/ maximum
matching algorithm)

24 benchmark instances (of

Scatter-plot comparing search-space
connectivity (modelled as the proportion of
moves seen to retain feasibility) vs the overall
reduction in cost

#17

#3

#4

#7#8

#11
#12

#15
#16

#18 #5

#6#13

#14

#20

#24

#21

0.8

0.9

1
24 benchmark instances (of
varying size and
“constrained-ness” were
considered”

reduction in cost

#19

#1

#2

#9

#23

0.5

0.6

0.7

on
 in

 C
os

t (
30

0s
) considered

Clearly there is a strong
positive correlation between
“connectivity” and the#19

#10

#22

0.2

0.3

0.4

R
ed

uc
tio

<400
400+

connectivity and the
amount the solution is
ultimately improved

0

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Proportion of Moves Maintaining Feasibility

400+

Search Space Connectivity
and Timetabling Problems

Comparison
The use of the maximum
matching algorithm improves

Scatter-plot comparing search-space
connectivity (modelled as the proportion of
moves seen to retain feasibility) vs the overall
reduction in cost

0.8

0.9

1

matching algorithm improves
the connectivity of the
search space
Clearly this allows the

reduction in cost

0.5

0.6

0.7

on
 in

 C
os

t (
30

0s
)

Clearly, this allows the
algorithm to reduce the cost
significantly more than the
first option

0.2

0.3

0.4

R
ed

uc
tio <400 (w/ no max match)

400+ (w/ no max match)

<400 (w/ max match)

400+ (w/ max match)

first option

0

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Proportion of Moves Maintaining Feasibility

()

Further Points on Timetabling
and Related Problems
Search space connectivity can be improved by exploiting
underlying problem structure

Maximum matching algorithmMaximum matching algorithm
Kempe-chain and S-chain interchanges
Ejection-chain and optimal-reassignment algorithms (Hungarian, Auction
algorithms)algorithms)

Are there any “useful” recombination-type operators that can also
maintain feasibility in timetabling?
Comparison of algorithms is a problem.

Competitions can be useful for generating new ideas without the fear of “are
these ideas publishable??!!?”
On the other hand, are we interested in understanding algorithm behaviour, or
do we just want to beat other algorithms?

References…
Carter’s Timetabling Instances ftp://ftp.mie.utoronto.ca/pub/carter/testprob/all_file.zip
Dimacs Graph Colouring Instances http://dimacs.rutgers.edu/challenges/
International Timetabling Competition http://www.cs.qub.ac.uk/itc2007/
I. Blochliger and N. Zufferey.”A graph coloring heuristic using partial solutions and a reactive tabu scheme.” Computers oc ge a d u e ey g ap co o g eu st c us g pa t a so ut o s a d a eact e tabu sc e e Co pute s
and Operations Research, 35:960--975, 2008.
D. Brelaz. “New methods to color the vertices of a graph.” Commun. ACM, 22(4):251--256, 1979.
P. Galinier and J-K. Hao. “Hybrid evolutionary algorithms for graph coloring.” Journal of Combinatorial Optimization,
3:379--397, 1999.
A. Hertz and D. de Werra. “Using tabu search techniques for graph coloring.” Computing, 39(4):345--351, 1987.
J. Moody and D. White. “Structural cohesion and embeddedness: A hierarchical concept of social groups.” American
Sociological Review, 68(1):103--127, 2003.
S. Korman. Combinatorial Optimization. The Graph-Colouring Problem, pages 211--235. Wiley, New York, 1979.
R. Lewis. “A general-purpose hill-climbing method for order independent minimum grouping problems: A case study in
graph colouring and bin packing.” Computers and Operations Research, 36(7):2295--2310, 2009.
R. Lewis and J. Thompson. “On the application of graph colouring techniques in round-robin sports scheduling.”
Computers and Operations Research, 38(1):190--204, 2010.
R L i J Th C M f d d J Gill d “A Wid R i C t ti l C i f Hi hR. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A Wide-Ranging Computational Comparison of High-
Performance Graph Colouring Algorithms”, Computers & Operations Research DOI: 10.1016/j.cor.2011.08.010.
J. Thompson and K. Dowsland. “An improved ant colony optimisation heuristic for graph colouring.” Discrete Applied
Mathematics, 156:313--324, 2008.

