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The graph colouring problem
Given a simple graph G = (V,E), paint each vertex with a colour 
such that 

No adjacent vertex has the same colourNo adjacent vertex has the same colour
The number of different colours used is minimal

This problem (and derivations of it) are NP-hard/NP-complete
1 2

3 4 5

1 2

3 4 5

6 7 8 6 7 8

In the above case, the colouring on the right (using 5 colours) is 
9 10 9 10

“optimal”: no solution with fewer colours exists.



Why “Colouring”?
Graph colouring originates 
from the colouring of maps of 
countries and counties whichcountries and counties, which 
can be represented as “planar 
graphs”
All l h ( d )All planar graphs (and maps) 
can be coloured using just 
four colours
However, other types of 
graphs require different 
numbers of colours The 50 US States coloured using four colours (source 

iki di )numbers of colours wikipedia)



Example: The Greedy 
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour  

seen to be feasible (i.e. no clash is induced), 
opening new colours when necessary 1 2
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opening new colours when necessary
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Example: The Greedy 
Algorithm
1) Take some permutation of the vertices
2) For each vertex v, assign v it to the first colour  

seen to be feasible (i.e. no clash is induced), 
opening new colours when necessary 1 2

3 4 51 3 4 6 7 5 2 8 9 10

opening new colours when necessary

6 7 8

9 10

89 Solution Optimal!!!

1 3 4 6 7

5 2 10

p
(This won’t always be 

the case and depends 
on the ordering in the 
permutation)…3 6 permutation)



Talk Motivations
Many different algorithmic schemes have been developed for graph 
colouring. 
However only a limited set of benchmark instances are typicallyHowever only a limited set of benchmark instances are typically 
considered in comparisons (e.g. DIMACS)
Comparisons between algorithms are also difficult to draw because:

− Different experimental conditions are used
− Often only the good results are reported
− Researchers choose their own cut-off points and only report final (best) solutions
− Algorithms are often tuned to get the best results on each instance

To alleviate this, we will
− Consider a wide variety of problem instance, both artificial and “real world”y
− Compare the algorithms using an unbiased experimental framework with algorithms 

treated as black-boxes.



Examples of Artificial Graphs
Random Graphs

− Start with a graph with |V| vertices and no edges.
− Go through each pair of vertices and add an edge with probability pGo through each pair of vertices and add an edge with probability p
− |V| and p are defined by the user

Flat graphsFlat graphs 
− Take |V| vertices and partition them into K equal-sized groups.
− Now add edges between pairs of vertices in different groups with probability p
− Add edges such that the variance in vertex degrees is kept to a minimum (this 

makes vertices “look the same”)

SSurprisingly, nearly all algorithmic comparisons in the literature are 
concerned with just a small number of artificial graphs.



Graph Colouring in Practical 
OR problems

Educational Timetabling: Arrange lessons into Sports League Scheduling: Schedule a series of 
timeslots, avoiding conflicts (e.g. don’t ask a student 
to be in 2 places at once)

matches between teams such that teams play at most 
once in every round of the league

1 2

Match-vertices

(0,1)
(0,2)

(3,2)
(3,1)

3 4 5

6 7 8
1 2

(1,0)

(0,3)(3,0)

(2,3)

7 8

9 10
3

4 5

7 8

Match (1,2)
cannot be 
scheduled 
in round 0

(1,2)(2,1)
(2,0) (1,3)

timeslots

6
7 8

9 10

r5
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r4 r2

in round 0
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Some Useful terms ?

A colouring is complete if all vertices are 
assigned a colour, else it is partial Partial proper colouring using 5 

colours (1 uncoloured)

A colouring is proper if no pair of 
adjacent vertices is assigned the same 
colour, else it is improper

A colouring is feasible if and only if it is 
both complete and proper

C l t i l i i
A solution is optimal if it is feasible, and 
the number of colours being used is 
minimal

Complete improper colouring using 
5 colours (2 clashes)

minimal 

The number of colours used in an optimal 
colouring is termed the chromatic g
number Feasible (and optimal) colouring 

using 5 colours 



Algorithmic Schemes for 
Graph Colouring

Constructive Approaches
− Assign each vertex a colour one-by-one, backtracking if desired/necesarry
− E g Greedy (first-fit) algorithm Dsatur recursive largest first (RLF)E.g. Greedy (first fit) algorithm, Dsatur, recursive largest first (RLF).

Optimisation Based Methods
Feasible-only Search Space
− Explore the space of feasible solutions and attempt to reduce the number of colours.

Space of complete, improper solutions
− Colour all vertices using a fixed number of colours and attempt to eliminate all clashes
− Reduce the number of colours if successful

Space of partial, proper solutions
− Colour all vertices using a fixed number of colours. If no colour is available for a vertex (all 

l ld i d l h) l it l d N tt t t li i t llcolours would induce a clash), leave it uncoloured. Now attempt to eliminate all 
uncoloured vertices.

− Reduce the number of colours if successful

Combinations of these are also possibleCombinations of these are also possible…



Algorithms Tested
TabuCol (Hertz and de Werra, 1987)

− Search the space of complete improper k-colourings using tabu search, attempting to eliminate clashes.
− Decrease k and restart when a colouring with zero clashes is achieved

PartialCol (Blochliger and Zufferey, 2008) 
− Search the space of partial, proper k-colourings using tabu search, attempting to colour uncoloured 

vertices while never allowing any clashes
− Decrease k and restart when a complete colouring is achieved

Hybrid Evolutionary Algorithm (Galinier and Hao, 1999)
− Evolve a population of complete, improper k-colourings via a specialised crossover operator
− Locally improve each solution using TabuCol for a fixed number of iterations

Hill Climbing Approach (Lewis, 2009)
− Search the space of feasible colourings, attempting to reduce the number of colours being used;
− Only perform alterations to a solution that maintain feasibility (e.g. Kempe chain moves)

Backtracking Approach (B l 1979 K 1979)Backtracking Approach (Brelaz, 1979; Korman, 1979) 
− Produce an initial solution using the Dsatur heuristic
− Attempt to improve the solution by systematically reassigning vertices to different colours
− This is a complete algorithm given excess time

AntCol (Based on Ant Colony Optimisation. Reported in paper but not considered here)



Algorithms Tested
Search the space of 
complete, improper 
k-colourings

Search the space of partial, 
proper k-colourings

TabuColTabuCol PartialColPartialCol

HybridHybrid

Backtracking 
Approach
Backtracking 
Approach

Hybrid 
Evolutionary 
Algorithm

Hybrid 
Evolutionary 
Algorithm

Hill ClimbingHill ClimbingHill Climbing 
Algorithm
Hill Climbing 
Algorithm

Search the space of all feasible 
l i d i thcolourings, reducing the 

number of colours being used



Algorithms Tested
Search the space of 
complete, improper 
k-colourings

Local Search

Search the space of partial, 
proper k-colourings

TabuColTabuCol PartialColPartialCol
Local Search 
Only

HybridHybrid

Backtracking 
Approach
Backtracking 
Approach

Hybrid 
Evolutionary 
Algorithm

Hybrid 
Evolutionary 
Algorithm

Hill ClimbingHill Climbing

Local Search 
hybridised 
with “large Hill Climbing 

Algorithm
Hill Climbing 
Algorithm

move 
operators”

Search the space of all feasible 
l i d i thcolourings, reducing the 

number of colours being used



Experimental Setup
6 different algorithms (+variants); 5000 different problem instances 
(“artificial” and “real world”); 40,000+ individual trials.
Over a decade of computing time consumed in totalOver a decade of computing time consumed in total
Platform-independent measure of computational effort used (number 
of constraint-checks)
Large cut-off points used in each trial to give some notion of excess 
time (5 x 1011 checks – at least a few hours for each trial)
Algorithms treated as black boxes: no “manual tuning” for differentAlgorithms treated as black-boxes: no manual tuning  for different 
instances



Performance on Random 
Graphs (|V|=1000)

Clearly, methods that 
explore infeasible 
search-spaces (partial-p (p
proper or complete-
improper) are more 
successful
Feasible-only space 
(HC) features lower 
connectivity and brings 
worse results
Backtracking algorithm 
not competitivep
HEA’s combination of 
LS and global operators 
is favourable
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Performance on Random 
Graphs (|V|=250)

Clearly, methods that 
explore infeasible 
search-spaces (partial-p (p
proper or complete-
improper) are more 
successful
Feasible-only space 
(HC) features lower 
connectivity and brings 
worse results
Backtracking algorithm 
not competitivep
HEA’s combination of 
LS and global operators 
is favourable



Performance on Random 
Graphs over time (|V|=1000)

p=0.25
p=0.5

p=0.75p

Over time, local-search based methods 
make the quickest improvements
However, given enough time the HEA 
returns better results
Hill Climbing method and Backtracking g g
are again inferior



Performance on Flat Graphs
|V| = 500, k = 10. (50 v’s-per-colour)

|V| = 500, k = 50. (10 v’s-per-colour)

|V| = 500, k = 100. (5 v’s-per-colour)| | , ( p )

Experiments with flat graphs within the 
phase transition regions reveal similarphase transition regions reveal similar 
characteristics to random graphs



Analysis of Results
Clearly, better results are gained by algorithms that explore spaces of 
infeasible colourings (i.e. TabuCol, PartialCol, HEA)
HEA, which also involves a global search operator (recombination) isHEA, which also involves a global search operator (recombination) is 
superior to local search on its own in some cases.
In contrast, the feasible-only search space is more disconnected, thus 
improvements are more difficult to makeimprovements are more difficult to make
However, random and flat graphs are very particular types of graphs that 
feature high levels of vertex-degree homogeneity

For example degrees of vertices in random graphs are modelled byFor example, degrees of vertices in random graphs are modelled by 
D ~ B(|V| – 1, p), giving low variance for high and low p-values;
For the flat graphs, degree variance is also kept deliberately low;
In the considered instances the degree coefficient of variation (CV SD / mean xIn the considered instances, the degree coefficient of variation (CV = SD / mean x 
100) is always less than 29%

Do the same performance features hold for other types of graph?



Some real world timetabling 
instances (Carter 1996)
Name |V| Density Degree Degree Degree 

(min;med;max) mean CV

hec-s-92 81 0 415 9; 33; 62 33 7 36 30%hec-s-92 81 0.415 9; 33; 62 33.7 36.30%
sta-f-83 139 0.143 7; 16; 61 19.9 67.40%
yor-f-83 181 0.287 7; 51; 117 52 35.20%
ute-s-92 184 0.084 2; 13; 58 15.5 69.10%
ear f 83 190 0 266 4; 45; 134 50 5 56 10%ear-f-83 190 0.266 4; 45; 134 50.5 56.10%
tre-s-92 261 0.18 0; 45; 145 47 59.60%
lse-f-91 381 0.062 0; 16; 134 23.8 93.20%
kfu-s-93 461 0.055 0; 18; 247 25.6 120.00%

93 486 0 075 0 24 274 36 5 111 80%rye-s-93 486 0.075 0; 24; 274 36.5 111.80%
car-f-92 543 0.138 0; 64; 381 74.8 75.30%
uta-s-92 622 0.125 1; 65; 303 78 73.70%
car-s-91 682 0.128 0; 77; 472 87.4 70.90%
pur-s-93 2419 0.029 0; 47; 857 71.3 129.50%

“Consider the instance kfu-s-93, by no means the hardest or largest in the set. It 
involves 5349 students sitting 461 exams, ideally fitted into 20 timeslots. The probleminvolves 5349 students sitting 461 exams, ideally fitted into 20 timeslots. The problem 
contains 2 cliques of size 19 and huge numbers of smaller ones. There are 16 exams 
that clash with over 100 others.” (Ross et al. 2003).



Performance of Algorithms on 
the 13 timetabling Instances

Here, backtracking 
is able to produce 
competitive results 60

Number of colours at cut-off point (mean 
of 50 runs on each instance)

p
(more heuristic 
information 
available) 40

50

HEA

The methods that 
combine LS and
global operators 20

30 Hill Climbing

Backtracking

PartialCol
are the most 
consistent
Methods based 0

10

PartialCol

TabuCol 

solely on LS 
produce 
disappointing 
results… |V|



Performance of Algorithms on 
the 13 timetabling Instances

Average rank (compared to other algorithms) across all random and flat graphs

HEA TabuCol PartialCol AntCol HC Bktr

1 2 3 4 5 6

HEA TabuCol PartialCol AntCol HC Bktr

1 2 3 4 5 6

HEAHC Bktr PartialCol AntCol TabuCol

1 2 3 4 5 6

Average rank (compared to other algorithms) across the 13 timetabling graphs

BEST WORST



Performance of Algorithms on 
the 13 timetabling Instances

The higher degree-

Cost change distributions for a random 
graph and a timetabling graph with similar 
densities (0.15 and 0.138 resp.)

variance in timetabling 
graphs tends to  
increase the variance 

35

30

in cost

Thi i li

25

20
C

ha
ng

e

This implies a more 
spiky cost landscape 
that the LS techniques 

15

10

5

C
os

t C

on their own seem to 
have difficulty coping 
with CarterRandomCarterRandom

5

0

Random Timetable                    Random Timetable

TabuCol PartialCol



Sports Scheduling
Sports scheduling problem with 4 teams

Given n teams, arrange matches so 
that each team plays each other m
times in m(n – 1) rounds

Match-vertices

(0 1)(3 2)

Sports scheduling problem with 4 teams 
playing each other twice (n=4; m=2)

times in m(n 1) rounds
Represented as a graph by 
introducing ½mn(n – 1) vertices, one 
for each match

(0,1)
(0,2)

(0,3)(3,0)

(3,2)
(3,1)

for each match
Edges are imposed between matches 
that cannot be played simultaneously
Extra vertices can also be added to

(1,0)

(1,2)

(2,3)

(2,1) Extra vertices can also be added to 
add further constraints concerning the 
rounds
I d dd d

r0

Match (1,2)
cannot be 
scheduled 
in round 0

( , )
(2,0) (1,3)

In our case, edges are added 
between match- and round-vertices 
with probability p

r5

0

r1

r4 r2

Round-vertices

r3



Sports Scheduling
Problem using n=30 m=2 (|V| = Problem using n=30 m=2 (|V| = 928)Problem using n=30, m=2, (|V| = 
928) with chromatic number = 58

Problem using n=30, m=2, (|V| = 928) 
with unknown chromatic number

Increases to p also lead to increases in degree variance (and 
coefficient of variation)
Methods based solely on LS clearly perform poorly when p is highMethods based solely on LS clearly perform poorly when p is high
These issues are alleviated when using a global operator (as with HEA)



Social Networks
Take all the pupils from a 
school and add edges 
between those who arebetween those who are 
friends

Group children so they are 
away (or with) their friends Pajek

12
Number of colours on 20 different 

t k ( f 50 )
Such graphs appear to be 
easy to colour optimally 
( l d l

8

10

12

HEA
ou

rs

networks (mean of 50 runs)

(sparse, low degrees, regular 
structures)

2

4

6
Hill Climbing
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General Thoughts…
Has the field of graph colouring been too focussed on “artificial” g p g
instances?

Graph-structure seems to have a large effect on algorithm performance. 
H thi i ft h d tHowever this is often hard to assess

Methods relying solely on local search are not always sufficient (e.g. 
graphs with spiky landscapes)graphs with spiky landscapes)

HEA generally the best approach from our trials
Recombination operator exploits the problem structurep p p
Combination of LS and global operators
Search space connectivity is higher than the alternative “feasible-only 
space”

HEA PARTIALCOL TABUCOL HC ANTCOL BT

p
Average ranking over all instance classes (equally weighted)

1 2 3 4 5 6



Case Study: Post Enrolment-
based course timetabling

Used in the International Timetabling 
Competition 2007
The problem features a number of

1 2

3 4 5

The problem features a number of 
“hard” (mandatory) constraints and 
“soft” (optional) constraints.
The problem is related to graph

6 7 8

9 10 The problem is related to graph 
colouring, though room availability in 
each timeslot is also important 
(amongst other things).1 2 3 4 5

timeslots

(amongst other things).
A maximum matching algorithm can 
be used to determine whether all 
vertices in a particular colour class can

1 Lesson 
1

Lesson 
4

Lesson 
7

2 Lesson  
9

Lesson 
3

Lesson 
8ro

om
s

vertices in a particular colour class can 
be assigned to acceptable rooms in a 
timeslot.

3 Lesson  
10

Lesson 
2

Lesson 
5

Lesson 
6



Solution Strategy
Exploration via neighbourhood ops First, produce a feasible solution 

(one that obeys all hard 
constraints)

Initial 
feasible 

)
Next, search the space of 
feasible solutions attempting to 
eliminate soft constraint 

solution Final feasible 
solution (best 
found)

violations

Space of all feasible solutions



Solution Strategy
optimal First, produce a feasible solution 

(one that obeys all hard 
constraints))
Next, search the space of 
feasible solutions attempting to 
eliminate soft constraint 

Infeasible Region

violations
Depending on the problem 
and method of exploration, the

Space of all feasible solutions

and method of exploration, the 
“feasible-only” search space 
may feature low levels of 
connectivity (or could be y (
disconnected)



Solution Strategy
optimal First, produce a feasible solution 

(one that obeys all hard 
constraints)

Infeasible Region
)

Next, search the space of 
feasible solutions attempting to 
eliminate soft constraint 
violations
Depending on the problem and 
method of exploration, the

Space of all feasible solutions

method of exploration, the 
“feasible-only” search space 
may feature low levels of 
connectivity (or could be y (
disconnected)
It thus makes sense to 
increase this connectivity ifincrease this connectivity if 
possible



Simple Neighbourhood search 
algorithm for timetabling

Based on Simulated Annealing, run for a 
fixed time limit (300s)
Neighbourhood Operator

1 2

3 4 5

Choose a random lesson (vertex) v and try to 
move it to a new timeslot (colour) t
Option 1: Inspect each empty room in timeslot t, if 
any are suitable for v such that feasibility is

6 7 8

9 10
any are suitable for v such that feasibility is 
maintained, perform the move; else reject
Option 2: As above, but also perform the 
maximum matching algorithm if a suitable room 
was not identified

1 2 3 4 5
timeslots

was not identified.
We can also perform “swaps” in the same manner 

Clearly option 2 allows more feasible 
moves to be identified bringing higher

1 Lesson 
1

Lesson 
4

Lesson 
7

2 Lesson  
9

Lesson 
3

Lesson 
8ro

om
s

moves to be identified, bringing higher 
search space connectivity
However, repeated applications of a 
(polynomially bounded) maximum

3 Lesson  
10

Lesson 
2

Lesson 
5

Lesson 
6

(polynomially-bounded) maximum 
matching algorithm still adds expense



Search Space Connectivity 
and Timetabling Problems

Option 1 (no maximum 
matching algorithm)

24 benchmark instances (of

Scatter-plot comparing search-space 
connectivity (modelled as the proportion of 
moves seen to retain feasibility) vs the overall 
reduction in cost

#17

#3
#4

#7
#8

#11
#12
#15

#16

#18 #5

#6
#13

#14

#24#210.8

0.9

1
24 benchmark instances (of 
varying size and 
“constrained-ness” were 
considered”

reduction in cost

#20

#23

0.5

0.6

0.7

on
 in

 C
os

t (
30

0s
) considered

Clearly there is a strong 
positive correlation between 
“connectivity” and the

#19

#1

#2
#9

#10

#22

0.2

0.3

0.4

R
ed

uc
tio

<400
400+

connectivity  and the 
amount the solution is 
ultimately improved

0

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Proportion of Moves Maintaining Feasibility

400+



Search Space Connectivity 
and Timetabling Problems

Option 2 (w/ maximum 
matching algorithm)

24 benchmark instances (of

Scatter-plot comparing search-space 
connectivity (modelled as the proportion of 
moves seen to retain feasibility) vs the overall 
reduction in cost
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Search Space Connectivity 
and Timetabling Problems

Comparison
The use of the maximum 
matching algorithm improves

Scatter-plot comparing search-space 
connectivity (modelled as the proportion of 
moves seen to retain feasibility) vs the overall 
reduction in cost
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Further Points on Timetabling 
and Related Problems
Search space connectivity can be improved by exploiting 
underlying problem structure

Maximum matching algorithmMaximum matching algorithm
Kempe-chain and S-chain interchanges
Ejection-chain and optimal-reassignment algorithms (Hungarian, Auction 
algorithms)algorithms)

Are there any “useful” recombination-type operators that can also 
maintain feasibility in timetabling?
Comparison of algorithms is a problem. 

Competitions can be useful for generating new ideas without the fear of “are 
these ideas publishable??!!?”
On the other hand, are we interested in understanding algorithm behaviour, or 
do we just want to beat other algorithms?
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