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The 1D Bin Packing Problem

• In a standard 1D bin packing 

problem we seek to pack 1D 

items into a minimum number of 

fixed-sized bins.

• It is NP-complete (generalises

the partitioning problem).

• The order and orientation of 

items within each group 

irrelevant

• But what if it is?



Problem:

Arrange a set of fixed-height trapezia 

into a minimal number of bins

Issues

1) Which items should be put into 

the same bin? (A bin packing 

problem)

2) How should items be arranged in 

a bin? (An ordering and rotation 

problem)

The Trapezium Packing Problem



The Trapezium Packing Problem

Problem:

Arrange a set of fixed-height trapezia 

into a minimal number of bins

Issues

1) Which items should be put into 

the same bin? (A bin packing 

problem)

2) How should items be arranged in 

a bin? (An ordering and rotation 

problem)



Real World Applications



Arranging the trapezoids in a single bin

• Items have 4 orientations, but we only need to consider two

• Inter-item wastage in the above is simply |qi –qj|

• Wastage w = all inter-item wastage plus the LHS and RHS

• Problem Def: Given a group of items Ssuch that:

can we determine an item arrangement such that:
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TSP interpretation of the single bin problem

• Arranging trapezoids in a single bin can be seen as a special type of TSP

• Each projection is a “city” ; edges between cities correspond to wastage; and 

edges on the same shape are set to minus infinity

• Can a “valid” route of less than w be achieved (discounting minus infinity 

arcs)?

p1 q1 p2 q2 p3 q3 pz qz

p1 ∞ –∞ 2 1 5 4 5 5

q1 –∞ ∞ 1 2 2 1 2 2

p2 2 1 ∞ –∞ 3 2 3 3

q2 1 2 –∞ ∞ 4 3 4 4

p3 5 2 3 4 ∞ –∞ 0 0

q3 4 1 2 3 –∞ ∞ 1 1

pz 5 2 3 4 0 1 ∞ –∞

qz 5 2 3 4 0 1 –∞ ∞
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Revision: Eulerian Graphs and Cycles

• Def: An Eulerian cycle is a cycle that uses every edge in a graph exactly 

once.

• Def: An Eulerian graph is a graph that is connected and where all vertex 

degrees are even

• Fact: A graph has an Eulerian cycle if and only if it is Eulerian.



• Take a set of trapezoids

• Form a multigraph G using projection pairs as edges 

E = { {0,0}, {0,1}, {0,2}, {1,5}, {2,4}, {4,6}, {5,6} }

0 1 2 3 4 5 6

0     0 0        1  0       2 1              5  2          4    4               6     5                6

How to Solve the Single Bin Problem



• Take a set of trapezoids

• Form a multigraph G using projection pairs as edges 

E = { {0,0}, {0,1}, {0,2}, {1,5}, {2,4}, {4,6}, {5,6} }

• Fact: If G is Eulerian, then a zero cost arrangement exists.

• This is the case here: ( (0,0), (0,1), (1,5), (5,6), (6,4), (4,2), (2,0) ) 

0 1 2 3 4 5 6

0     0 0        1  0       2 1              5  2          4    4               6     5                6

How to Solve the Single Bin Problem



• Fact. If G has odd-degree vertices, then a minimum weight matching can be 

introduced to make them even.

• For example, 

0 1 2 3 4 5 6

How to Solve the Single Bin Problem

odd odd odd odd



• Fact. If G has odd-degree vertices, then a minimum weight matching can be 

introduced to make them even.

• For example, 

• If G is now connected, an optimal arrangement is an Eulerian cycle in this 

new graph as before

((0,0),(0,2),(2,4),(4,6),(6,4),(6,5),(5,1),(1,3),(1,0))

How to Solve the Single Bin Problem

0 1 2 3 4 5 6

Wastage = 2 Wastage = 2

Wastage = 2 Wastage = 2



• If all degrees are even but G is disconnected, the components need to be 

joined

• Fact. Each of the n Eulerian components is optimal.

• Fact. Optimally joining two components gives us n – 1 optimal Eulerian

components

9 10 11 12 13 14 151 2 3 4 5 6 7 8

• ((1,1),(1,3),(3,5),(5,7),(7,6),(6,2),(2,1)) Wastage = 0

• ((8,8)) Wastage = 0

• ((9,9),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Wastage = 4

w = 4

How to Solve the Single Bin Problem



9 10 11 12 13 14 151 2 3 4 5 6 7 8

• ((1,1),(1,3),(3,5),(5,7),(7,6),(6,2),(2,1)) Wastage = 0

• ((8,8)) Wastage = 0

• ((9,9),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Wastage = 4

w = 4

How to Solve the Single Bin Problem

• If all degrees are even but G is disconnected, the components need to be 

joined

• Fact. Each of the n Eulerian components is optimal.

• Fact. Optimally joining two components gives us n – 1 optimal Eulerian 

components



9 10 11 12 13 14 151 2 3 4 5 6 7 8

,(7,6),(6,2),(2,1)) Wastage = 2(8,8)

• ((9,9),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Wastage = 4

w = 6

How to Solve the Single Bin Problem

• ((1,1),(1,3),(3,5),(5,7),

• If all degrees are even but G is disconnected, the components need to be 

joined

• Fact. Each of the n Eulerian components is optimal.

• Fact. Optimally joining two components gives us n – 1 optimal Eulerian 

components



9 10 11 12 13 14 151 2 3 4 5 6 7 8

,(7,6),(6,2),(2,1)) Wastage = 2(8,8)

• ((9,9),(9,11),(11,13),(13,15),(15,13),(15,14),(14,10),(10,12),(10,9)) Wastage = 4

w = 6

How to Solve the Single Bin Problem

• ((1,1),(1,3),(3,5),(5,7),

• If all degrees are even but G is disconnected, the components need to be 

joined

• Fact. Each of the n Eulerian components is optimal.

• Fact. Optimally joining two components gives us n – 1 optimal Eulerian 

components



9 10 11 12 13 14 151 2 3 4 5 6 7 8

(8,8) (9,9),(9,11),(11,13),(13,15),(15,13),

w = 8

How to Solve the Single Bin Problem

• ((1,1),(1,3),(3,5),(5,7),

(15,14),(14,10),(10,12),(10,9) ,(7,6),(6,2),(2,1)) Wastage = 8

• A proof naturally follows which demonstrates this method to be exact. The 

problem using multiple bins is still NP-hard, however.

• If all degrees are even but G is disconnected, the components need to be 

joined

• Fact. Each of the n Eulerian components is optimal.

• Fact. Optimally joining two components gives us n – 1 optimal Eulerian 

components



The multi-bin problem: Comparison using 

FFD

• Example solution using a simple 

(inexact) heuristic to pack trapezia 

into individual bins, combined with 

FFD.

• Solution using the exact algorithm 

for packing trapezia into individual 

bins, combined with FFD



Further Improvements via Evolutionary 

Methods and Local Search

Instances with approximately 

9 items per bin

Run profiles for various different evolutionary operators using 

500-item problems (averaged across 240 instances)

Instances with approximately 

2.5 items per bin

• Lewis, R.and P. Holborn(2017) 'How to Pack Trapezoids: Exact and Evolutionary Algorithms'. IEEE Transactions on Evolutionary 
Computation, vol. 21(3), pp. 463-476.



Special Cases Arising in Industry
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• Coffman, 9Φ Ŝǘ ŀƭΦ άtŜǊŦŜŎǘ Packing Theorems and the Average-Case Behaviour 
of Optimal and Online Bin tŀŎƪƛƴƎέ {L!a Review 2002 44:1, 95-108 

If item sizes in a 1D BPP are 1, 2, 3, …, j,  then a 

perfect packing exists if and only if the sum of 

all item sizes is a multiple of the bin capacity



Special Cases Arising in Industry
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