
An Introduction to Metaheuristic
Algorithms and the Problems they (try

to) Solve

Rhyd Lewis
Cardiff School of
Mathematics / Cardiff
Business School

- LewisR9@cf.ac.uk
- http://www.cf.ac.uk/maths/
contactsandpeople/profiles/
lewisr9.html

Talk Summary

l An introduction to intractable problems
l Solving intractable problems with

metaheuristic algorithms
l Software Demonstration
l Case Study: The Second International

Timetabling Competition www.cs.qub.ac.uk/itc2007/
l Conclusions: Advantages and limitations of

metaheuristic algorithms

The Travelling Salesman Problem
(TSP)

l A classic combinatorial optimisation problem
l Given n cities on a map, find the shortest

route that visits all cities once, and starts and
ends at the same city.

Starting and ending in Paris, which
route allows us to visit all major
cities with the least amount of
travelling?
(We assume straight-line distances
between cities for now)

The Travelling Salesman Problem
(TSP)

l A classic combinatorial optimisation problem
l Given n cities on a map, find the shortest

route that visits all cities once, and starts and
ends at the same city.

Starting and ending in Paris, which
route allows us to visit all major
cities with the least amount of
travelling?
(We assume straight-line distances
between cities for now)

The Travelling Salesman Problem
(TSP)

l A classic combinatorial optimisation problem
l Given n cities on a map, find the shortest

route that visits all cities once, and starts and
ends at the same city.

Starting and ending in Paris, which
route allows us to visit all major
cities with the least amount of
travelling?
(We assume straight-line distances
between cities for now)

The Travelling Salesman Problem
(TSP)

l A classic combinatorial optimisation problem
l Given n cities on a map, find the shortest

route that visits all cities once, and starts and
ends at the same city.

Starting and ending in Paris, which
route allows us to visit all major
cities with the least amount of
travelling?
(We assume straight-line distances
between cities for now)

The 1-Dimensional Bin Packing
Problem

Given n items of different (1D) sizes, and given
some fixed-capacity bins, pack the items into
a minimum number of bins

items
Bin size

The 1-Dimensional Bin Packing
Problem

Given n items of different (1D) sizes, and given
some fixed-capacity bins, pack the items into
a minimum number of bins

items
Bin size Is this the minimal number of

bins needed for these items?

TSP Growth Rates

l A route around a map can be represented as a
permutation of the n cites:

l E.g. For 5 cities, [B, A, C, E, D] means “start at city B, then go
to city A, then city C, then E, then D, and return to city B”

l Given n cities, there is a total of n! permutations
(where n! = n x (n – 1) x (n – 2) x … x 2 x 1)

l Some permutations represent the same routes –
there are actually ½(n – 1)! different routes in total.

E

A
B

C

D

An Inconvenient Truth … (in layman’s
terms)

l The only algorithm that will guarantee to return the
provably optimal solution to any instance of the TSP
needs to check the majority of – if not all – possible
routes.

l However, the number of routes grows exponentially,
quickly making the problem intractable:

Number of routes for different n’s

Lots!!!4.67 x 101553.04 x 1062181,44012Routes [½(n – 1)!]

100010050105Cities (n)

Other Intractable problems

l Intractable problems arise in many areas:
– Packing Problems
– Games (Sudoku, Tetris, Minesweeper)
– Vehicle routing problems
– Scheduling and Timetabling Problems (see later)
– Graph theoretic problems, and so on.

l To tackle them, we might:
– Attempt to avoid or redefine the problem
– Use some brute-force algorithm and limit ourselves only to

small instances
– Use approximation algorithms that will hopefully give us a

solution that is “good enough” for practical purposes

Solving Intractable Problems using
Metaheuristics

l A metaheuristic is a general algorithmic framework for
addressing intractable problems

l They are often (though not necessarily) inspired by processes
occurring in nature, e.g.

– Darwinian Natural Selection
– Annealing
– Collective behaviour of ants

l Others merely provide neat ways of exploring the huge search
spaces in efficient and effective ways.

l Typically, metaheuristics are approximation algorithms – they
cannot always produce provably optimal solutions, but they do
have the potential to produce good solutions in short amounts
of time (if used appropriately).

Example: An “Evolutionary Algorithm”
for the TSP

(1) Randomly produce an “initial
population” of valid candidate
solutions.

(2) Calculate the cost (fitness) of each
member of the population

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E

B C D A E F G

A B C D E F G

Population

Example: An “Evolutionary Algorithm”
for the TSP

(3) Darwinian Selection: Randomly
choose two “parent” solutions,
biasing towards “fitter” (i.e. better
quality solutions)

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E

B C D A E F G

A B C D E F G

b c d a e f gA B C D E F G

Parent 1 Parent 2

Population

Example: An “Evolutionary Algorithm”
for the TSP

(4) Crossover: Combine features of
the two parents to form two new
“offspring” solutions

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E

B C D A E F G

A B C D E F G

b c d a e f gA B C D E F G

Parent 1 Parent 2

b a C D e f gC B d a E F G

Offspring 1 Offspring 2

Population

crossover

Example: An “Evolutionary Algorithm”
for the TSP

(5) Mutation: Make a small number of
random alterations to the offspring

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E

B C D A E F G

A B C D E F G

b c d a e f gA B C D E F G

Parent 1 Parent 2

b a C D e f gC B d a E F G

Offspring 1 Offspring 2

Population

b a C D e g fC B a d E F G

crossover

mutation

Example: An “Evolutionary Algorithm”
for the TSP

A C E G B D F

C B A D E F G

F C E G B D A

D A C E G B F
B A C D E F G

B C F G A D E

B C D A E F G

A B C D E F G

b c d a e f gA B C D E F G

Parent 1 Parent 2

b a C D e f gC B d a E F G

Offspring 1 Offspring 2

Population

b a C D e g fC B a d E F G

(6) Replacement: Reinsert the new
offspring back into the population,
and go back to Step (3)

crossover

mutation

Fitness Landscapes of Combinatorial
Optimisation Problems

fitness

Fitness Landscapes of Combinatorial
Optimisation Problems

fitness

Global Optima

Local Optima

Fitness Landscapes of Combinatorial
Optimisation Problems

fitness

Global Optima

Local OptimaA demonstration…

Typical behaviour of an Evolutionary
algorithm

l As the population evolves, the quality of the solutions in the population
tends to increase.

l Typically, the performance of the EA will be affected by choice of:
– Parameter Settings (Population size, mutation rate, etc.)
– Types of operators, population policies used etc.

Unfortunately, this is somewhat of a “black art”

Time / iterations

fit
ne

ss

Version A

Version B

Ant Colony Optimisation (in one slide)

l Another important metaheuristic

l Like evolutionary algorithms, ACO is applicable to a
wide range of problems

Metaheuristics: Research Questions

l Research questions include:
– What quality of solutions can we expect from our

algorithm?
– How fast is the algorithm?
– How do the solutions / run-times compare to other

methods?
– How robust/reliable is the algorithm?
– Is the algorithm more reliable with certain types of

problem instances (e.g. those of a certain size)?
l Such questions are usually answered empirically

– Cardiff’s CONDOR pool comes in very useful here ☺

Case Study: University Timetabling

l A problem common to all
universities

l Assign “events” to
timeslots and rooms
while obeying various
constraints

l Typically constraints for
this problem are
idiosyncratic (every
university is different)

l Research in the field
typically disconnected

Case Study: The International
Timetabling Competition ITC2007

l www.cs.qub.ac.uk/itc2007/
l Run between August ’07 and January ’08
l Idea: Design the best algorithm for a number of benchmark

problem instances.
l Three competition tracks – exam timetabling, curriculum-based

timetabling, and post enrolment-based timetabling
l Any type of algorithm was permitted, including commercial

software.
l A strict run time limit imposed (approx 5 min. depending on

machine and platform)
l Performance judged on solution quality at the time limit
l Algorithms were ranked against one another, and performance

was verified on the organisers computers

115129

458210

1463

130111

Rooms

Timeslots

1 2 3 4 5 6 7 … 44 45

Case Study: The International
Timetabling Competition ITC2007

l Example: Post enrolment-based course timetabling (track 2)

l Assign each event to a room and timeslot such that:
– No student or room is double-booked
– Precedence constraints are obeyed
– All events occur in suitable rooms

l Soft Constraints are also considered, such as:
– Students should not have to sit three lectures in a row
– Students should not have a lecture in the 5pm timeslot
– Students should not have just one lecture in a day

Case Study: The International
Timetabling Competition ITC2007

Purdue University, USATomas Müller(5)

Vienna University of Technology,
Austria

Clemens Nothegger, Alfred Mayer, Andreas Chwatal,
and Gunther Raidl

(4)

University of Southern DenmarkMarco Chiarandini, Chris Fawcett, and Holger Hoos(3)

Kwansei-Gakuin University, JapanMitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki(2)

Cork Constraint Computation
Centre, Ireland

Hadrien Cambazard, Emmanue Hebrard, Barry
O'Sullivan, and Alexandre Papadopoulos

(1)

AffiliationEntrantsRank

l Over 40 entrants from across the globe
l All finalists in each track used metaheuristic-based

approaches

Results of Track 2

Summary + Conclusions

l Metaheuristics an effective tool in our armoury
against intractable problems

l General algorithmic frameworks applicable to a wide
range of problem types.

l However:
– There is no “one-size fits all” policy, different approaches

seem to work well with different problems.
– Development times are often high
– Theoretical studies are difficult. Algorithm design is often

considered an art, and analysis is usually empirical
– Difficult to state bounds on solution quality

Summary + Conclusions

l Metaheuristics an effective tool in our armoury
against intractable problems

l General algorithmic frameworks applicable to a wide
range of problem types.

l However:
– There is no “one-size fits all” policy, different approaches

seem to work well with different problems.
– Development times are often high
– Theoretical studies are difficult. Algorithm design is often

considered an art, and analysis is usually empirical
– Difficult to state bounds on solution quality

Thanks for listening!
• TSP Demo Program by Konstantin Boukreev
www.codeproject.com/KB/recipes/tspapp.aspx
• Speaker, Rhyd Lewis
www.cardiff.ac.uk/maths/contactsandpeople/profiles/
lewisr9.html

