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Talk Summary

l An introduction to intractable problems
l Solving intractable problems with 

metaheuristic algorithms
l Software Demonstration
l Case Study: The Second International 

Timetabling Competition www.cs.qub.ac.uk/itc2007/
l Conclusions: Advantages and limitations of 

metaheuristic algorithms



The Travelling Salesman Problem 
(TSP)

l A classic combinatorial optimisation problem
l Given n cities on a map, find the shortest 

route that visits all cities once, and starts and 
ends at the same city.

Starting and ending in Paris, which 
route allows us to visit all major 
cities with the least amount of 
travelling?
(We assume straight-line distances 
between cities for now)
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The 1-Dimensional Bin Packing 
Problem

Given n items of different (1D) sizes, and given 
some fixed-capacity bins, pack the items into 
a minimum number of bins

items
Bin size



The 1-Dimensional Bin Packing 
Problem

Given n items of different (1D) sizes, and given 
some fixed-capacity bins, pack the items into 
a minimum number of bins

items
Bin size Is this the minimal number of 

bins needed for these items?



TSP Growth Rates

l A route around a map can be represented as a 
permutation of the n cites:

l E.g. For 5 cities, [B, A, C, E, D] means “start at city B, then go 
to city A, then city C, then E, then D, and return to city B”

l Given n cities, there is a total of n! permutations 
(where n! = n x (n – 1) x (n – 2) x … x 2 x 1 )

l Some permutations represent the same routes –
there are actually ½(n – 1)! different routes in total.

E

A
B

C

D



An Inconvenient Truth … (in layman’s 
terms)

l The only algorithm that will guarantee to return the 
provably optimal solution to any instance of the TSP 
needs to check the majority of – if not all – possible 
routes.

l However, the number of routes grows exponentially, 
quickly making the problem intractable:

Number of routes for different n’s

Lots!!!4.67 x 101553.04 x 1062181,44012Routes [½(n – 1)!]

100010050105Cities (n)



Other Intractable problems

l Intractable problems arise in many areas:
– Packing Problems
– Games (Sudoku, Tetris, Minesweeper)
– Vehicle routing problems
– Scheduling and Timetabling Problems (see later)
– Graph theoretic problems, and so on.

l To tackle them, we might:
– Attempt to avoid or redefine the problem
– Use some brute-force algorithm and limit ourselves only to 

small instances
– Use approximation algorithms that will hopefully give us a 

solution that is “good enough” for practical purposes



Solving Intractable Problems using 
Metaheuristics

l A metaheuristic is a general algorithmic framework for 
addressing intractable problems

l They are often (though not necessarily) inspired by processes 
occurring in nature, e.g.

– Darwinian Natural Selection
– Annealing
– Collective behaviour of ants

l Others merely provide neat ways of exploring the huge search 
spaces in efficient and effective ways.

l Typically, metaheuristics are approximation algorithms – they 
cannot always produce provably optimal solutions, but they do 
have the potential to produce good solutions in short amounts 
of time (if used appropriately).



Example: An “Evolutionary Algorithm”
for the TSP

(1) Randomly produce an “initial 
population” of valid candidate 
solutions. 

(2) Calculate the cost (fitness) of each 
member of the population

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E 

B C D A E F G

A B C D E F G

Population



Example: An “Evolutionary Algorithm”
for the TSP

(3) Darwinian Selection: Randomly 
choose two “parent” solutions, 
biasing towards “fitter” (i.e. better 
quality solutions)

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E 

B C D A E F G

A B C D E F G

b  c  d  a  e  f  gA B C D E F G

Parent 1 Parent 2

Population



Example: An “Evolutionary Algorithm”
for the TSP

(4) Crossover: Combine features of 
the two parents to form two new 
“offspring” solutions

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E 

B C D A E F G

A B C D E F G

b  c  d  a  e  f  gA B C D E F G

Parent 1 Parent 2

b a  C D e  f  gC B d a E F G

Offspring 1 Offspring 2

Population

crossover



Example: An “Evolutionary Algorithm”
for the TSP

(5) Mutation: Make a small number of 
random alterations to the offspring

A C E G B D F

A C E G B D F

F C E G B D A

D A C E G B F
E G C A B D F

B C F G A D E 

B C D A E F G

A B C D E F G

b  c  d  a  e  f  gA B C D E F G

Parent 1 Parent 2

b a  C D e  f  gC B d a E F G

Offspring 1 Offspring 2

Population

b a  C D e  g  fC B a d E F G

crossover

mutation



Example: An “Evolutionary Algorithm”
for the TSP

A C E G B D F

C B A D E F G

F C E G B D A

D A C E G B F
B A C D E F G

B C F G A D E 

B C D A E F G

A B C D E F G

b  c  d  a  e  f  gA B C D E F G

Parent 1 Parent 2

b a  C D e  f  gC B d a E F G

Offspring 1 Offspring 2

Population

b a  C D e  g  fC B a d E F G

(6) Replacement: Reinsert the new 
offspring back into the population, 
and go back to Step (3)

crossover

mutation



Fitness Landscapes of Combinatorial 
Optimisation Problems

fitness
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Fitness Landscapes of Combinatorial 
Optimisation Problems

fitness

Global Optima

Local OptimaA demonstration…



Typical behaviour of an Evolutionary 
algorithm

l As the population evolves, the quality of the solutions in the population 
tends to increase.

l Typically, the performance of the EA will be affected by choice of:
– Parameter Settings (Population size, mutation rate, etc.)
– Types of operators, population policies used etc.

Unfortunately, this is somewhat of a “black art”

Time / iterations

fit
ne

ss

Version A

Version B



Ant Colony Optimisation (in one slide)

l Another important metaheuristic

l Like evolutionary algorithms, ACO is applicable to a 
wide range of problems



Metaheuristics: Research Questions

l Research questions include:
– What quality of solutions can we expect from our 

algorithm?
– How fast is the algorithm?
– How do the solutions / run-times compare to other 

methods?
– How robust/reliable is the algorithm?
– Is the algorithm more reliable with certain types of 

problem instances (e.g. those of a certain size)?
l Such questions are usually answered empirically

– Cardiff’s CONDOR pool comes in very useful here ☺



Case Study: University Timetabling

l A problem common to all 
universities

l Assign “events” to 
timeslots and rooms 
while obeying various 
constraints

l Typically constraints for 
this problem are 
idiosyncratic (every 
university is different)

l Research in the field 
typically disconnected



Case Study: The International 
Timetabling Competition ITC2007

l www.cs.qub.ac.uk/itc2007/
l Run between August ’07 and January ’08
l Idea: Design the best algorithm for a number of benchmark 

problem instances.
l Three competition tracks – exam timetabling, curriculum-based 

timetabling, and post enrolment-based timetabling
l Any type of algorithm was permitted, including commercial 

software.
l A strict run time limit imposed (approx 5 min. depending on 

machine and platform)
l Performance judged on solution quality at the time limit
l Algorithms were ranked against one another, and performance 

was verified on the organisers computers



115129

458210

1463

130111

Rooms

Timeslots 

1       2       3       4      5       6       7          … 44     45

Case Study: The International 
Timetabling Competition ITC2007

l Example: Post enrolment-based course timetabling (track 2)

l Assign each event to a room and timeslot such that:
– No student or room is double-booked
– Precedence constraints are obeyed
– All events occur in suitable rooms

l Soft Constraints are also considered, such as:
– Students should not have to sit three lectures in a row
– Students should not have a lecture in the 5pm timeslot
– Students should not have just one lecture in a day



Case Study: The International 
Timetabling Competition ITC2007

Purdue University, USATomas Müller(5)

Vienna University of Technology, 
Austria

Clemens Nothegger, Alfred Mayer, Andreas Chwatal, 
and Gunther Raidl

(4)

University of Southern DenmarkMarco Chiarandini, Chris Fawcett, and Holger Hoos(3)

Kwansei-Gakuin University, JapanMitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki(2)

Cork Constraint Computation 
Centre, Ireland

Hadrien Cambazard, Emmanue Hebrard, Barry 
O'Sullivan, and Alexandre Papadopoulos

(1)

AffiliationEntrantsRank

l Over 40 entrants from across the globe
l All finalists in each track used metaheuristic-based 

approaches

Results of Track 2



Summary + Conclusions

l Metaheuristics an effective tool in our armoury 
against intractable problems

l General algorithmic frameworks applicable to a wide 
range of problem types.

l However:
– There is no “one-size fits all” policy, different approaches 

seem to work well with different problems.
– Development times are often high
– Theoretical studies are difficult. Algorithm design is often 

considered an art, and analysis is usually empirical
– Difficult to state bounds on solution quality
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Thanks for listening!
• TSP Demo Program by Konstantin Boukreev
www.codeproject.com/KB/recipes/tspapp.aspx
• Speaker, Rhyd Lewis
www.cardiff.ac.uk/maths/contactsandpeople/profiles/
lewisr9.html


