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Talk Summary
S

e An Introduction to intractable problems

e Solving intractable problems with
metaheuristic algorithms

e Software Demonstration

e Case Study: The Second International
TlmEtabllng CompetitiOn www. ¢s. qub. ac. uk/ it c2007/

e Conclusions: Advantages and limitations of
metaheuristic algorithms



The Travelling Salesman Problem
(TSP)

e A classic combinatorial optimisation problem

e Given n cities on a map, find the shortest
route that visits all cities once, and starts and
ends at the same city.
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The 1-Dimensional Bin Packing
Problem

Given n items of different (1D) sizes, and given
some fixed-capacity bins, pack the items into
a minimum number of bins
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TSP Growth Rates
e

e A route around a map can be represented as a

permutation of the n cites:

e E.g. For 5 cities, [B, A, C, E, D] means “start at city B, then go
to city A, then city C, then E, then D, and return to city B”

e Given n cities, there Is a total of n! permutations
(Wherenl=nx(h—-1)x(h—-2)x...x2x1)

e Some permutations represent the same routes —
there are actually 2n — 1)! different routes in total.




An Inconvenient Truth ... (in layman'’s

terms)

e The only algorithm that will guarantee to return the
provably optimal solution to any instance of the TSP
needs to check the majority of — if not all — possible

routes.

e However, the number of routes grows exponentially,
qguickly making the problem intractable:

Number of routes for different n’'s

Cities (n) 5

10

50

100

1000

Routes [Y2(n-1)!] 12

181,440

3.04 x 10692

4.67 x 10135

Lots!!!




Other Intractable problems
-

e Intractable problems arise in many areas:
- Packing Problems

Games (Sudoku, Tetris, Minesweeper)

Vehicle routing problems

Scheduling and Timetabling Problems (see later)
Graph theoretic problems, and so on.

e To tackle them, we might:

Attempt to avoid or redefine the problem

Use some brute-force algorithm and limit ourselves only to
small instances

Use approximation algorithms that will hopefully give us a
solution that is “good enough” for practical purposes



Solving Intractable Problems using
Metaheuristics

e A metaheuristic is a general algorithmic framework for
addressing intractable problems

e They are often (though not necessarily) inspired by processes
occurring in nature, e.g.
— Darwinian Natural Selection
— Annealing
— Collective behaviour of ants

e Others merely provide neat ways of exploring the huge search
spaces in efficient and effective ways.

e Typically, metaheuristics are approximation algorithms — they
cannot always produce provably optimal solutions, but they do
have the potential to produce good solutions in short amounts
of time (if used appropriately).



Example: An “Evolutionary Algorithm”
for the TSP

(1) Randomly produce an “initial
population” of valid candidate
solutions.

(2) Calculate the cost (fitness) of each
member of the population

Population

IACEGBD F|

IBCFGADE]|
IABCDEFG| [FCEGBDA]
IBCDAEFG]|

IDACEGBF
IACEGBDF

IEGCABDF




Example: An “Evolutionary Algorithm”
for the TSP

Parent 1 Parent 2
IABCDEFG| |bcdaefgdg|

Population

IACEGBD F|

IBCFGADE]|

|ABCDEFG[[FCEGBDA]

IBCDAEFG

IDACEGBF
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(3) Darwinian Selection: Randomly
choose two “parent” solutions,
biasing towards “fitter” (i.e. better
guality solutions)



Example: An “Evolutionary Algorithm”
for the TSP

Parent 1 Parent 2
|AB|[CDIEFG| |[bc|daefg

@ crossover

Offspring 1  Offspring 2

|ICBdaEFG| |bacCDef g|

Population

IACEGBD F|

IBCFGADE]|

|ABCDEFG[[FCEGBDA]

IBCDAEFG

IDACEGBF
IACEGBDF

IEGCABDF

(4) Crossover:. Combine features of
the two parents to form two new
“offspring” solutions



Example: An “Evolutionary Algorithm”
for the TSP

Parent 1 Parent 2
|AB|[CDIEFG| |[bc|daefg

@ crossover

Offspring 1  Offspring 2
|ICBdaEFG| |bacCDef g|

{/

|CB§%EFG| wzacoeg¥

Population

IACEGBDF]|

IBCFGADE]|
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IBCDAEFG
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IACEGBDF
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(5) Mutation: Make a small number of
random alterations to the offspring



Example: An “Evolutionary Algorithm”
for the TSP

Parent 1 Parent 2
|AB|[CDIEFG| |[bc|daefg

@ crossover

Offspring 1  Offspring 2
|ICBdaEFG| |bacCDef g|

{/

|baCDegf|

Population

IACEGBDF]|

IBCFGADE]|

|ABCDEFG[[FCEGBDA]

IBCDAEFG

IDACEGBF
ICBADEFG

IBACDEF G|

CBadEFG|

(6) Replacement: Reinsert the new
offspring back into the population,
and go back to Step (3)



Fithess Landscapes of Combinatorial
Optimisation Problems

fithess
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Fithess Landscapes of Combinatorial
Optimisation Problems

fitnes

A demonstration...
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Typical behaviour of an Evolutionary
algorithm

e As the population evolves, the quality of the solutions in the population

tends to increase.
Version B

Version A

fitness w—)

Time / iterations =)

e Typically, the performance of the EA will be affected by choice of:
- Parameter Settings (Population size, mutation rate, etc.)
- Types of operators, population policies used etc.
Unfortunately, this is somewhat of a “black art”



Ant Colony Optimisation (in one slide)

e Another important metaheuristic
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Figure 2. A. Ants in a pheromone trail between nest and food; B. an obstacle interrupts the trail, C. ants find two paths
1o go around the obstacle; D, a new pheromone trail is formed along the shorter path.

e Like evolutionary algorithms, ACO Is applicable to a
wide range of problems



Metaheuristics: Research Questions
...

e Research questions include:

-~ What quality of solutions can we expect from our
algorithm?

- How fast is the algorithm?

-~ How do the solutions / run-times compare to other
methods?

- How robust/reliable is the algorithm?

— Is the algorithm more reliable with certain types of
problem instances (e.g. those of a certain size)?

e Such questions are usually answered empirically
— Cardiff's CONDOR pool comes in very useful here ©



Case Study: University Timetabling

Hi Dave - Professor Jones says that he can teach Monday
mornings, but he’ll need to finish early on Wednesdays,
and will need three free hours on Fridays to walk his dog.

A problem common to all
universities

Assign “events” to
timeslots and rooms
while obeying various
constraints

Typically constraints for
this problem are
idiosyncratic (every
university is different)
Research in the field
typically disconnected



Case Study: The International
Timetabling Competition ITC2007

® WMWV. CS. qub. ac. uk/itc2007/

Run between August '07 and January '08

Idea: Design the best algorithm for a number of benchmark
problem instances.

e Three competition tracks — exam timetabling, curriculum-based
timetabling, and post enrolment-based timetabling

e Any type of algorithm was permitted, including commercial
software.

e A strict run time limit imposed (approx 5 min. depending on
machine and platform)

Performance judged on solution quality at the time limit

e Algorithms were ranked against one another, and performance
was verified on the organisers computers



Case Study: The International
Timetabling Competition ITC2007

e Example: Post enrolment-based course timetabling (track 2)

1 2 3 4 5 6 7 44 45
T 1 11 .y 13
6 | |14
Rooms
10| 2|8 5 4
! 9 12 15 1

v

<+<— Timeslots

e Assign each event to a room and timeslot such that:
— No student or room is double-booked
- Precedence constraints are obeyed
— All events occur in suitable rooms

e Soft Constraints are also considered, such as:
— Students should not have to sit three lectures in a row
— Students should not have a lecture in the 5pm timeslot
— Students should not have just one lecture in a day



Case Study: The International
Timetabling Competition ITC2007

Over 40 entrants from across the globe

All finalists in each track used metaheuristic-based
approaches

Results of Track 2

Rank | Entrants Affiliation

Q) Hadrien Cambazard, Emmanue Hebrard, Barry Cork Constraint Computation
O'Sullivan, and Alexandre Papadopoulos Centre, Ireland

(2) Mitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki Kwansei-Gakuin University, Japan

(3) Marco Chiarandini, Chris Fawcett, and Holger Hoos University of Southern Denmark

4) Clemens Nothegger, Alfred Mayer, Andreas Chwatal, Vienna University of Technology,
and Gunther Raidl Austria

(5) Tomas Miiller Purdue University, USA




Summary + Conclusions
.

Metaheuristics an effective tool in our armoury
against intractable problems

General algorithmic frameworks applicable to a wide
range of problem types.

However:

- There is no “one-size fits all” policy, different approaches
seem to work well with different problems.

- Development times are often high

- Theoretical studies are difficult. Algorithm design is often
considered an art, and analysis is usually empirical

— Difficult to state bounds on solution quality



Summary + Conclusions
.

e Metaheuristics an effective tool in our armoury
agalnst mtractable problems

Thanks for Ilstenlngl

TSP Demo Program by Konstantin Boukreev

www. codepr oj ect. coml KB/ r eci pes/t spapp. aspx

» Speaker, Rhyd Lewis

www. cardi ff. ac. uk/ mat hs/ cont act sandpeopl e/ profil es/
| ew sr9. ht m

T T T T T T T S TT TR T DT Ty ST T o STl ToT gy o Te To ore oroTTT gy Dl el

— Difficult to state bounds on solution quality



