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Abstract

Ametaheuristic-based algorithm is presented for the post enrolment-based course timetabling
problem used in track-2 of the Second International Timetabling Competition (ITC2007). The
featured algorithm operates in three distinct stages – a constructive phase followed by two sepa-
rate phases of simulated annealing – and is time dependent, due to the fact that various run-time
parameters are calculated automatically according to the amount of computation time available.
Overall, the method produces results in line with the official finalists to the timetabling compe-
tition, though experiments show that this algorithm also seems to find certain instances more
difficult to solve than others. A number of reasons for this latter feature are discussed.

1 Introduction

During late 2007 and early 2008 the Second International Timetabling Competition (ITC2007) was
organised and run by a group of timetabling researchers from five different European Universities.
The overall aim of this competition was to help people interested in timetabling from various fields
to compare and contrast their timetabling methods using a common set of benchmark instances in
a fair and accurate way.

On August the 1st 2007, the competition was officially started by the release of a number of
problem instances into the public domain. Entrants were invited to register with the competition
and to use these instances to help design algorithms that produced solutions according to the com-
petition evaluation criteria. On January 11th 2008, two weeks before the end of the competition, a
second set of problem instances was then also released. Competitors were required to submit their
results from both instance sets to the competition organisers by the 25th of January. The organ-
isers then collected the executables from selected entrants and ran these on their own benchmark
machines, together with a third “hidden” set of problem instances to officially rank the various
algorithms and choose a winner. Further details can be found in (McCollum et al., 2009) and also
on the competition webpage at http://www.cs.qub.ac.uk/itc2007/

Before holding ITC2007, it was decided that the competition would be split into three tracks,
each reflecting a different type of university timetabling problem, namely: (1) Exam timetabling, (2)
Post Enrolment-based Course timetabling, and (3) Curriculum-based timetabling. Full descriptions
of each of these problems can be found in the various specification reports (McCollum et al.,
2007; Lewis et al., 2007; Di Gaspero et al., 2007), available on the competition webpage. In this
paper, we present an algorithm for the problem used in track-2 of the competition. This particular
formulation simulates the real-world situation where students are given a choice of lectures that
they wish to attend, with the timetable then being constructed according to these choices. It is
also based on the timetabling problem used for the first international timetabling competition run
in 2003, albeit with extra features, which we outline in Section 2. Research arising due to the
first competition includes the ant colony optimisation approach of Socha and Samples (2003), the
simulated annealing-based algorithm of Kostuch (2005), and the mixed metaheuristic approach of

1



Lewis (2006). A variety of approaches for this problem-version are also offered by Rossi-Doria et al.
(2002). Further information concerning the first competition is also available on the official website
at www.idsia.ch/files/ttcomp2002/

In the next section we give a specification of the timetabling problem-version considered here.
Readers interested in discovering more about this problem, including the rationale of why this
problem-version takes the form that it does, are invited to consult the problem’s official specifica-
tion document (Lewis et al., 2007), available on the ITC2007 website. Following this, the proposed
algorithm is then described in detail in Section 3. Section 4 then contains details on the implemen-
tation and an analysis of the final results gained by the algorithm. Finally, Section 5 concludes the
paper.

It should be noted that this algorithm was not officially entered into ITC2007 due to the fact
that this author was one of the competition organisers.

2 Problem Description and Cost Functions

A problem instance for track-2 of ITC2007 contains the following information:

• A set of n events that are to be scheduled into 45 timeslots (to be interpreted as five days of
nine, 1-hour timeslots);

• A set ofm rooms where the events are to take place, each which has a specific seating capacity;

• A set of room-features that are required by events and which are satisfied by rooms;

• A set of s students who attend various combinations of the events;

• A set of available timeslots for each of the n events (i.e. not all events are available to be
scheduled in all of the timeslots);

• A set of precedence requirements stating that certain events should occur before/after others
in the timetable.

Given this information, the aim is to assign all of the n events to a room and a timeslot, whilst
obeying the following five hard constraints:1

HC1: No student should be required to attend more than one event in a particular timeslot;

HC2: Each event should be assigned to a room that has enough seats for all of the attending
students and which satisfies all of the room-features required by the event;

HC3: Only one event should be put into each room in any timeslot (i.e. no double-booking of
rooms);

HC4: Events should only be assigned to timeslots that are designated as “available” for those
events;

HC5: Where specified, events should be scheduled to occur in the correct order in the week

In addition to these five hard constraints, it is also desirable for the following three soft con-
straints to be satisfied:

SC1: Students should not be scheduled to attend an event in the last timeslot of a day (that is,
timeslots 9, 18, 27, 36, or 45);

SC2: Students should not have to attend events in three or more successive timeslots occurring in
the same day;

1Note that hard constraints 1-3 are the same as those used in the first timetabling competition.
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SC3: Students should not be required to attend just one event in a particular day

As is typical in timetabling research, for this problem the satisfaction of the hard constraints is
considered to be more important than the satisfaction of the soft constraints. Because of this, the
competition rules state that a candidate solution should be evaluated according to two separate
values: the Distance to Feasibility and the Soft Cost. The Distance to Feasibility is used because –
in contrast to the first competition – it is necessary to allow for the fact that an algorithm may not
be able to assign all of the n events into the timetable whilst obeying the hard constraints. For this
competition, it is therefore permissible to allow some events to remain unplaced in order to ensure
that none of the hard constraints are violated. (The ITC2007 rules stipulate that if an algorithm
produces a solution that contains any violations of the hard constraints, then it is considered invalid
and should be disqualified from the competition.) The Distance to Feasibility is thus calculated
by considering the events that are not placed in the timetable. However, it is not the number of
events that are considered here; rather it is the total number of students that attend each of these
unplaced events, reflecting the real-world situation where we are interested in satisfying as many
people’s needs as possible within a timetable. Thus if, for example, a particular solution timetable
has three events that are unplaced, and the number of students attending each of these is 10, 5, and
8, then the Distance to Feasibility is simply (10 + 8 + 5) = 25. Note that if all events are inserted
into a timetable (whilst obeying the hard constraints), then its Distance to Feasibility is zero.

The second value used for timetable evaluation is the Soft Cost, which is calculated by simply
counting the number of soft constraint violations in a timetable. For SC1, if a student is scheduled
to attend an event in the last timeslot of a day, then this results in one penalty point. (Naturally,
if there are x students in this class, we consider this as x penalty points.) For SC2 if one student
has three events in a row we count this as one penalty point. If a student has four events in a row
we count this as two, and so on. Note that adjacent events occurring over two separate days are
not counted as a violation. Finally, for SC3 each time a student attends just one event on a day,
this results in one penalty point. The Soft Cost is simply the total of these three values. (Further
information on this cost measure can be found in Lewis et al. (2007) or on either of the competition
webpages.)

Given these two values, the following procedure is used to compare solutions. First, the solu-
tions’ Distances to Feasibility are considered, and the solution with the lowest value is deemed the
winner. However, when two or more solutions are equal in this respect, the winner is deemed the
solution among these that has the lowest Soft Cost.

For this competition track sixteen problem instances were made publicly available during the
competition: eight “early” instances, which were released on the start date, and eight “late” in-
stances, released two weeks before the close of the competition. Since completion of the competition
in 2008 the eight “hidden” instances used by the competition officials have also been released into
the public domain. In all cases these problems were created using an automated generator and all
are known to feature at least one perfect solution – that is, a solution where all of the n events
are assigned to the timetable without any constraint violations, hard or soft. For the competition,
a benchmark timing program was also released which entrants were required to execute on their
own machines. This program specifies a time limit for each machine and ensures that entrants use
approximately the same amount of computational effort when testing their algorithms.

3 Algorithm Description

In this approach our strategy is to tackle the problem in three distinct stages, each with a strict
time limit, T1, T2, and T3 respectively (such that the full time limit T = T1+T2+T3). If a particular
stage completes before reaching its time limit, then the remaining time is passed on to the next
stage. If Stage 3 completes early, then the algorithm also halts early. For guidance, a description
of the main objectives of each stage is given in fig. 1. As this demonstrates, the idea is to arrange
the constraints into three different levels of importance. At each successive stage, violations of
constraints satisfied in previous stages are then disallowed. In the first stage, attempts are made
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Stage 1

Insert as many events as 
possible into the timetable 

whilst obeying HC1, HC2,
HC3, and HC4

Stage 2

With the inserted events from 
Stage 1, attempt to satisfy HC5

whilst not violating HC1, HC2,
HC3, or HC4

Stage 3

Attempt to satisfy the soft 
constraints, whilst not 

re-violating HC1, HC2, HC3,
HC4, or HC5

Start time
T

0
T

1
= 1/3(T) T

2
= 2/3(T)

Time limit
T

3
= T

Remove any remaining events (if 

any) causing a violation of HC5

Figure 1: High level description of the three stage algorithm. Here, T represents the time limit
defined by the competition benchmarking program

to try and satisfy hard constraints 1 to 4 using specialised procedures proposed in some of our
earlier work (Lewis, 2006). Although these methods are generally effective, they do not, however,
seem immediately applicable to the remaining hard constraint HC5; thus the second stage of the
algorithm is concerned with the removal of violations of this constraint. Finally, in Stage 3, the
algorithm concentrates on removing as many soft constraint violations as possible from the current
timetable. At this point any unplaced events are ignored.

In Stages 2 and 3 of this algorithm, optimisation is carried out using simulated annealing (Kirk-
patrick et al., 1983). Because this algorithm runs according to time limits, when applying this
metaheuristic it is useful to calculate cooling schedules that take the amount of available compu-
tation time into account. The aim is to therefore allow the algorithm to perform a slower cooling
(and therefore a wider, more global search) when presented with a generous amount of run time,
and a quicker cooling (with a more intensive, greedy search) when only small amounts of time are
available. The method for calculating these parameters is described in Section 3.3.

Note that in all experiments described here, 1/3 of the available time limit T is allocated to
each stage. In preliminary tests we also experimented with a scheme that allowed each stage to be
run until all of its objectives were met (or until T was reached), but this often turned out to give
worse performance in instances where full feasibility was difficult to achieve as this would result in
no time being allocated to Stage 3. We also experimented with different time allocations, such as
granting Stages 1 and 2 a total of 9/10 of the available run time, but on the whole we found that
our 1/3 allocation gave each stage of the algorithm sufficient time to complete their objectives (or
to stagnate in the process).

In the next subsection, we now discuss some encoding and preprocessing issues that are relevant
in the design of this algorithm. Subsections 3.2, 3.3, and 3.4 then describe Stages 1, 2, and 3 of the
algorithm respectively.

3.1 Encoding and Preprocessing Issues

For this approach a timetable is encoded using a two-dimensional (r × 45) matrix (i.e. grid) in
which rows represent rooms and columns represent timeslots. Throughout this paper we refer to
this timetable matrix as tt and use the notation tt[i, j] to denote the contents at location (i, j).
Each cell in this grid (i.e. place in the timetable) can be blank or will be occupied by exactly one
event. Note that this latter feature means that it is impossible to double-book a room, allowing us
to disregard HC3.

It is also useful to carry out some preprocessing steps before executing the main body of the
algorithm. First, two additional matrices are constructed: the event-room matrix, and the conflicts
matrix (these were also used in the first timetabling competition by Kostuch (2005)). The event-
room matrix is of dimensions n × m and is used to indicate which rooms are suitable for which
events. This can be easily calculated for an event i by simply identifying which rooms satisfy both
the seating capacity and the features required by i. The n× n conflicts matrix, meanwhile, is very
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Table 1: Heuristic rules used in Stage 1.

Heuristic Description

h1 Choose the event with the smallest number of suitable
places in tt to which it can be assigned.

h2 Choose the unplaced event that conflicts with the most
other events.

h3 Choose an event randomly.

h4 Choose the place that is suitable for the least number of
other unplaced events in U .

h5 Choose the place in the timeslot with the fewest events in.
h6 Choose a place randomly.

h7 Choose the event with the least number of students.

much like the standard adjacency matrix used for representing graphs and indicates which pairs of
events conflict (i.e. cannot be assigned to the same timeslot). Thus, if two events i and j have one
or more students in common, or if both i and j can only be assigned to the same single room r,
then it is obvious that events can never be feasibly assigned to the same timeslot, and so elements
(i, j) and (j, i) in the conflicts matrix can be marked as true.

Our final act of preprocessing considers the hard constraint HC4. First of all, note that if
we have a constraint “event i must occur before event j”, then this will automatically imply the
constraint “event j must occur after event i”. For this approach, this means that all occurrences
of HC5 can be conveniently stored in a compact way using an array A of n lists, where each list
A[i] contains the events that need to be scheduled after event i in the timetable. (The “before”
constraints do not need to be considered). Second, we can also make further additions to A by
noting that hard constraint HC5 is transitive (i.e. if event i must occur before event j, and event
j must occur before event k, then this implies that event i must also occur before event k). In
some of the competition instances, not all of the implied constraints due to this transitivity are
present in the given problem files, and so it makes sense to calculate these in order to gain a better
understanding of the number of constraints that are being considered when trying to solve the
problem.

3.2 Algorithm Description: Stage 1

In Stage 1, the objective is to insert as many of the n events into the timetable as possible without
violating the first four hard constraints. A precise pseudo-code description is presented fig. 2. As
is shown, this stage takes as arguments the empty timetable tt, an iteration-limit I, and a list of
currently unplaced events U (to begin with, |U | = n). Events are then taken one-by-one from U
and are inserted into suitable places in tt.2 In order to try and maximise the number of events that
are inserted, heuristic rule h1 is used to select the next event, with ties being broken using h2, and
further ties with h3 (refer to Table 1). Note that these particular heuristics are akin to those used in
the Dsatur algorithm for graph colouring (Brelaz, 1979), though in this case h1 also takes the issue
of room allocation into account. Rule h1 therefore selects events based on the state of the current
partial timetable tt, and prioritises those with the least remaining feasible options. Meanwhile, rule
h2 prioritises those events that have the highest number of conflicts which, as a rule of thumb, are
often the more problematic events to insert. Note that events with no remaining place-options are
ignored at this point. Finally, to select a place for each event, rule h4 is used, which chooses the
place whose occupation will have the least effect on the place-options of the remaining unplaced
events in U . Ties of this rule are broken using h5 and further ties with h6.

At the end of this assignment stage, the list U will be empty (in which case all of the events
have been assigned to the timetable), or U will only contain events that have no suitable places in

2In this section the term “suitable” is used to indicate a place in the timetable that will not result in the violation
of hard constraints 1 to 4.
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Stage-1(tt, U , I)
(1) while (∃ events in U with suitable places in tt)
(2) Select an event e ∈ U that has suitable places in tt;
(3) Choose a suitable place p for e;
(4) Move e from U into tt at place p;
(5) Iterated-Heuristic-Search(tt, U , I);

Iterated-Heuristic-Search(tt, U , I)
(1) while (U ̸= ∅ and (timelimit T1 not reached))
(2) Heuristic-Search(tt, U , I);
(3) if (U ̸= ∅)
(4) V ← Extract-Some-Events(tt, |U |);
(5) Heuristic-Search(tt, U , I);
(6) U ← U ∪ V ;

Heuristic-Search(tt, U , I)
(1) Make a list P of all the unoccupied places in tt;
(2) i← 0;
(3) while (U ̸= ∅ and P ̸= ∅ and i < I)
(4) foreach (u ∈ U and p ∈ P )
(5) if (p is a suitable place in tt to assign u)
(6) Put u into p in tt;
(7) Remove u from U and p from P ;
(8) if (U ̸= ∅ and P ̸= ∅)
(9) repeat
(10) Choose a random event e in tt and p ∈ P ;
(11) if (p is suitable place in tt to assign e)
(12) Move e from its current place to p;
(13) Update P to reflect the changes;
(14) i← i+ 1;
(15) until (i = I or (e has been moved to p))

Extract-Some-Events(tt, q)
(1) V ← ∅;
(2) for (i← 1 to q)
(3) Randomly choose two events e and g in tt;
(4) Move either e of g (according to h7) from tt to V ;

Figure 2: Pseudo-code description of Stage 1. Here, tt represents the (r × 45) timetable matrix
and U and V are lists of unplaced events. (When Stage-1 is first called, |U | = n.) I defines the
iteration limit of the Heuristic-Search procedure.

tt. In the latter case, the procedure Iterated-Heuristic-Search is called, which is used to try
and transfer further events from U into tt, ensuring that hard constraints 1-4 are not violated in the
process. To start, the sub-procedure Heuristic-Search is called, which operates by repeatedly
attempting to move events from U into free (i.e. blank) places in tt (lines (3)-(7)). While doing
this, however, Heuristic-Search also shuffles the events within tt so that the free places change
position (lines 9-15). The rationale of this latter action is that it offers the possibility of further
events in U being added to tt when we loop back to line (1) of Heuristic-Search. However,
although the Heuristic-Search procedure is quite effective in reducing the number of unplaced
events, in initial experiments it was also noticed that it is only able to do this for a fairly short
period of time, after which the process stagnated, with no further events being transferred from U
into tt. To counter this, Iterated-Heuristic-Search therefore includes a mechanism intended
for re-invigorating the process, which is achieved by the procedure Extract-Some-Events, which
removes other events from tt and puts these into a second list V . Of course, by removing events
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Table 2: Percentage of events inserted into the timetable before and after applying Iterated-
Heuristic-Search. Presented figures are the means of 51 runs on each instance together with the
standard deviation. Instances 1-8 are the “early” instances, 9-16 the “late” instances, and 17-24
the “hidden” instances.

Instance n m s Before (%) After (%)

comp-2007-2-1 400 10 500 86.3± 1.2 100± 0.0
comp-2007-2-2 400 10 500 83.9± 1.2 100± 0.0
comp-2007-2-3 200 20 1000 95.3± 1.2 100± 0.0
comp-2007-2-4 200 20 1000 92.1± 1.3 100± 0.0
comp-2007-2-5 400 20 300 92.7± 1.0 100± 0.0
comp-2007-2-6 400 20 300 92.2± 0.9 100± 0.0
comp-2007-2-7 200 20 500 93.2± 1.1 100± 0.0
comp-2007-2-8 200 20 500 93.4± 1.1 100± 0.0
comp-2007-2-9 400 10 500 85.5± 1.4 100± 0.0
comp-2007-2-10 400 10 500 81.2± 1.4 100± 0.1
comp-2007-2-11 200 10 1000 94.5± 1.3 100± 0.0
comp-2007-2-12 200 10 1000 91.3± 1.2 100± 0.0
comp-2007-2-13 400 20 300 90.0± 1.2 100± 0.0
comp-2007-2-14 400 20 300 90.7± 0.9 100± 0.0
comp-2007-2-15 200 10 500 91.5± 1.3 100± 0.0
comp-2007-2-16 200 10 500 98.0± 0.8 100± 0.0
comp-2007-2-17 100 10 500 99.9± 0.4 100± 0.0
comp-2007-2-18 200 10 500 89.4± 2.2 100± 0.0
comp-2007-2-19 300 10 1000 86.9± 1.0 99.4± 0.6
comp-2007-2-20 400 10 1000 98.6± 0.7 100± 0.0
comp-2007-2-21 500 20 300 94.3± 1.0 100± 0.0
comp-2007-2-22 600 20 500 83.9± 0.8 95.0± 1.0
comp-2007-2-23 400 20 1000 85.6± 1.4 99.8± 0.3
comp-2007-2-24 400 20 1000 97.6± 0.6 100± 0.0

from tt, extra free places are created that can be used by some of the events in U . Thus the events
in V are put to one side temporarily, and Heuristic-Search is again applied using U and the new,
emptier timetable. Finally, upon completion of this second phase of heuristic search, the events in V
are added to the events (if any) that still reside in U and the entire Iterated-Heuristic-Search
process is repeated.

Examining the pseudo-code of Iterated-Heuristic-Search, two important features become
apparent. First, it is noticeable that if we choose to transfer some events from tt into V (line (4))
and then subsequently add the contents of V to U (line (6)), then in some cases the overall number
of unplaced events may actually increase, thus conflicting with the objectives of Stage 1. However,
in practice if such a situation arises, it is usually only temporary because the number of events in
U is generally seen to decrease again when the algorithm loops back to the start of the procedure.
The second issue, meanwhile, concerns the strategy of event extraction used in Extract-Some-
Events. One choice available here is to simply choose events randomly for removal. However,
in this particular case it seems sensible to bias the choice towards removing smaller events from
the timetable, due to the fact that unplaced events containing less students will attract a lower
Distance to Feasibility measure when the timetable is evaluated. Thus, heuristic rule h7 (Table 1)
is used here. Note also that |U | events are currently extracted here, though a different value could
be used here in theory.

Table 2 summarises the effectiveness of Stage 1 on the twenty-four problem instances. Details
on the sizes of each instance are also included here: the number of events n, rooms m and students
s. With sixteen of the instances, ≥ 90% of events are inserted into the timetable by the heuristic
assignment rules on average. With the remaining eight instances this figure averages in the 80s. We
also see that after the subsequent application of Iterated-Heuristic-Search, > 99% of events
are inserted into the timetable in all cases, with the exception of instance 22, the largest problem
in the set, where an average of only 95% of events are assigned.
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3.3 Algorithm Description: Stage 2

In Stage 2 of the algorithm, attention is turned towards eliminating violations of the remaining
hard constraint HC5. As mentioned earlier, this is done using simulated annealing (SA). The cost
function C(tt) used in this phase is:

C(tt) =
n∑

i=1

|A[i]|∑
j=1

f(i, j), (1)

where

f(i, j) =

{
size(i)+size(A[i]j)

B if (slot(i) ≥ slot(A[i]j))
0 otherwise.

(2)

Here, A refers to the array of lists described in Section 3.1, A[i]j indicates the jth element in the
list A[i], and slot(i) indicates the timeslot that event i is assigned to in timetable tt. In addition,
size(i) indicates the number of students attending event i, and B is a constant that reflects the
total number of students in the two largest events. Cost function C thus reflects the number of
violations of HC5 in tt, with each violation incurring a penalty value of between zero and one. In
a previous version of this algorithm (Lewis, 2008) all H5 violations incurred a penalty value of one,
however this current method is an improvement as it prioritises the satisfaction of HC5 with larger
events, thus paying heed to the ultimate measure of quality: the Distance to Feasibility. Obviously,
the aim in this stage is to try and produce a solution tt with C(tt) = 0.

The neighbourhood operator used in this phase operates by randomly selecting a cell tt[a, b] in
the timetable. A second cell tt[c, d] is then also randomly selected, and the contents of the two
cells are swapped. If such a move causes a violation of hard constraints 1-4, then it is immediately
rejected and reset; otherwise it is accepted, and tt is re-evaluated using C. Note that in choosing
the second cell tt[c, d] it is necessary to ensure that tt[a, b] ̸= tt[c, d]. This guarantees (a) that the
two selected cells are distinct, and (b) that at least one of the selected cells is occupied (obviously, if
either (a) or (b) were not true then the corresponding move would result in an identical timetable).

Note that an application of this neighbourhood operator results in one of two actions. The first
occurs when two occupied cells are selected, which causes the places of the two associated events to
be swapped in the timetable. The second occurs when one occupied and one blank cell are selected,
causing just one event to be moved to a different place in the timetable. Due to the way in which
cells are selected in this case, the probability of each of these actions occurring is directly related
to the proportion of occupied cells in the timetable: assuming (without loss of generality) that n
events are present in a timetable with p = 45m places, then the probability of a swap occurring is:

P (swap) =
n

p
× n− 1

p− 1
, (3)

(i.e. the conditional probability of selecting one occupied cell in the grid, followed by another,
different occupied cell). The probability of performing a move, meanwhile, is:

P (move) =

(
p− n

p
× 1.0

)
+

(
n

p
× p− n

p− 1

)
, (4)

(i.e. the sum of the probability of selecting a blank cell followed by an occupied cell, and the
probability of selecting an occupied cell followed by a blank). Note that these probabilities arise
naturally due to our chosen method of cell selection and will be fixed in each run of the algorithm.
We highlight them here in order to aid our analysis of this algorithm and we note that in practice
it would be easy to attach different probabilities to the swap and move actions if it were desired.

Given the above cost function and neighbourhood operator, a straightforward application of
SA is now used: starting at an initial “temperature” t0, during execution the temperature variable
is slowly reduced according to a temperature update rule ti+1 = αti, where α (0 < α < 1) is a
variable known as the “cooling rate”. At each temperature ti, a Markov chain of length n2 is then
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Table 3: Cost of the timetable (using cost function C) at the start and end of Stage 2, and the
number of extra events that are removed in order to free the timetables of remaining hard constraint
violations. Presented figures are the means of 51 runs on each instance together with the standard
deviation.

Instance Start End Removed

comp-2007-2-1 14.9± 3.0 0.5± 0.7 0.5± 0.8
comp-2007-2-2 13.8± 3.1 1.6± 1.6 1.8± 1.8
comp-2007-2-3 7.4± 1.4 0.0± 0.0 0.0± 0.0
comp-2007-2-4 8.1± 1.7 0.0± 0.0 0.0± 0.0
comp-2007-2-5 57.1± 7.6 0.0± 0.0 0.0± 0.0
comp-2007-2-6 52.9± 4.1 0.0± 0.0 0.0± 0.0
comp-2007-2-7 6.4± 1.8 0.0± 0.0 0.0± 0.0
comp-2007-2-8 7.7± 2.1 0.0± 0.0 0.0± 0.0
comp-2007-2-9 16.9± 2.6 2.8± 2.1 3.0± 2.1
comp-2007-2-10 16.0± 2.4 4.3± 2.6 4.6± 2.8
comp-2007-2-11 6.0± 1.6 0.0± 0.0 0.0± 0.0
comp-2007-2-12 7.4± 2.5 0.0± 0.0 0.0± 0.0
comp-2007-2-13 52.0± 5.9 0.0± 0.0 0.0± 0.0
comp-2007-2-14 52.6± 5.2 0.0± 0.2 0.0± 0.2
comp-2007-2-15 7.7± 2.0 0.0± 0.0 0.0± 0.0
comp-2007-2-16 10.9± 2.1 0.0± 0.0 0.0± 0.0
comp-2007-2-17 3.1± 1.0 0.0± 0.0 0.0± 0.0
comp-2007-2-18 7.3± 1.8 0.0± 0.0 0.0± 0.0
comp-2007-2-19 11.9± 2.3 4.0± 2.1 4.4± 2.3
comp-2007-2-20 16.7± 3.0 0.0± 0.0 0.0± 0.0
comp-2007-2-21 70.3± 6.1 0.0± 0.0 0.0± 0.0
comp-2007-2-22 77.0± 8.5 32.4± 10.4 31.1± 9.0
comp-2007-2-23 18.0± 3.5 4.3± 2.4 4.5± 2.3
comp-2007-2-24 116.2± 10.6 1.8± 2.4 1.8± 2.1

generated by performing n2 applications of the neighbourhood operator. Any move that increases
the cost of the timetable is then accepted with a probability exp(−δ/ti), where δ is the cost change
that this move causes. Any move that reduces or leaves the cost unchanged, meanwhile, is accepted
automatically.

Because this algorithm aims to be time dependent, it is a good idea to choose a cooling rate α
that allows Markov chains to be generated at as many temperatures as possible between the initial
temperature t0 and some end temperature. To calculate such a cooling rate the SA algorithm
is first run for 5% of Stage 2’s allocated time, and the number of Markov chains generated is
recorded. This figure is then used to predict the number µ of Markov chains that will be generated
in the remaining 95% of time. Using µ, we can then calculate a value for α that ensures that the
temperature will be reduced from t0 to a specific end temperature tµ in exactly µ steps as:

α = (tµ/t0)
1/µ. (5)

In our case, following other works (van Laarhoven and Aarts, 1987; Abramson et al., 1996) the
initial temperature t0 is determined automatically by performing a small sample of neighbourhood
moves and then calculating the variance of the cost over these moves. The end temperature tµ,
meanwhile, needs to be set by the user (see Section 4).

Finally, Stage 2 completes either when a timetable tt with a cost C(tt) = 0 is found, or when
the time limit T2 is reached. If the latter occurs, then the best solution found during this stage is
taken, and events that are seen to be causing a violation of HC5 are removed one-by-one from tt
until it is completely free of any hard constraint violations. This resultant timetable is then passed
on to Stage 3.

Table 3 summarises the effects of Stage 2 on the twenty-four competition instances. Note that
there is no significant correlation between the initial and final costs of the timetables. In total,
sixteen of the instances feature final costs with a means and standard deviations close to zero,
indicating that the procedure is able to successfully complete its objectives in the majority of runs.
We see that the instances that caused difficulties with the assignment heuristics in Stage 1, namely
instances 1, 2, 9, 10, 19, 22, and 23 also prove to be troublesome here, and events usually need to
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be removed from these timetables to free them of remaining violations of HC5. This is also the
case with instance 24, where an average of 1.8 events need to be removed. One possible reason for
the lack of performance in these eight cases is that candidate solutions to some of these problems
have high proportions of their cells occupied (> 66% of available places with instances 1, 2, 9,
10, 19, and 22), thus according to eq. (3) a greater proportion of proposed neighbourhood moves
will be swaps, which are more likely to be rejected since both events involved need to be assigned
to places that are suitable. There are exceptions to this observation however: instances 23 and
24, for example, feature relatively low place occupancy rates of 44% but still show a marked lack
in performance in this stage. However, as we will see in fig. 3 later, all of the eight instances
causing difficulties here also tend to feature quite a high rejection rate of proposed neighbourhood
moves, which seems to make movements in the search space more restricted, making exploration
and resultant improvements in cost harder to achieve. We will return to this topic in Section 4.

3.4 Algorithm Description: Stage 3

In Stage 3, attention is turned towards satisfying the soft constraints of the problem. When this
part of the algorithm is invoked, one of two situations will have occurred: either a valid timetable
with a Distance to Feasibility of zero will have been produced or, after having spent 2/3’s of the
available run time trying to deal with the hard constraints, we will have settled for a timetable that
has some unplaced events. In the latter case, these unplaced events are not considered any further
– i.e. they are effectively eliminated from the problem.

The application of SA used here is again straightforward, with the cooling scheme being calcu-
lated in the same way as Stage 2. The neighbourhood operator is also the same as Stage 2, though
in this case, moves that cause a violation of hard constraint HC5 (in addition to the previous
four) are also immediately reset. Finally, the cost function used here is simply the Soft Cost (see
Section 2), which is appropriate due to the fact that no hard constraint violations are permitted in
the timetable from this point onwards.

4 Implementation and Analysis of Final Results

The algorithm was implemented using C++ under Linux using the g++ 4.1.1 compiler under the
-O3 optimisation option. All experiments were run on a 1.8GHz machine with 256MB RAM, which
was granted a time limit 636 seconds by the competition benchmarking program. Because many
of this algorithm’s parameters are calculated automatically, only two values need to be chosen for
these experiments: I, the iteration limit used for Iterated-Heuristic-Search in Stage 1, and
the end temperature tµ used in the two annealing phases. In practice, the algorithm did not seem to
be particularly sensitive to variations in I, providing that values of around 100n or more were used.3

Values of I less than this tended to cause the process to stagnate too readily. Considering the end
temperature tµ, if this was set too high then it tended to mean that too many increases in cost were
permitted throughout the run, making the search more of a random walk. On the other hand, if tµ
was too low, then the algorithm spent too much time at low temperatures, making it more greedy
and increasing its probability of getting stuck in a local minimum. On the whole, however, the
algorithm did not seem too sensitive to variations in tµ, provided that values of around 0.000005
to 0.0001 were used. For all experiments here, parameter settings of I = 1000n and tµ = 0.00001
(for both annealing phases), were used. Note that no fine tuning of these values was conducted.

Table 4 summarises the final results achieved by this algorithm after performing 51 runs (from
different random seeds) on each instance. Because timetable quality is ranked according to a pair
of values (see Section 2), results are summarised using the best, worst, and median, and lower and
upper quartiles (we have used fifty-one runs so that these statistics can be calculated without the
need for interpolation, which would be inappropriate here). From the table we can see that the
algorithm has achieved feasibility for all instances at least once, with the exception of instance 22,

3The value n was used to allow the setting to scale with instance size.
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Table 4: Summary of the final results obtained from 51 runs on each problem instance. In each
case the Distance to Feasibility is presented together with the associated Soft Cost (in brackets).

Instance Best Q1 Median Q3 Worst

comp-2007-2-1 0 (1166) 0 (1571) 0 (1819) 32 (1535) 60 (1790)
comp-2007-2-2 0 (1665) 12 (1871) 42 (1866) 59 (1652) 168 (1734)
comp-2007-2-3 0 (251) 0 (361) 0 (436) 0 (472) 0 (673)
comp-2007-2-4 0 (424) 0 (488) 0 (552) 0 (617) 0 (666)
comp-2007-2-5 0 (47) 0 (121) 0 (190) 0 (276) 0 (533)
comp-2007-2-6 0 (412) 0 (574) 0 (621) 0 (701) 0 (794)
comp-2007-2-7 0 (6) 0 (320) 0 (383) 0 (461) 0 (719)
comp-2007-2-8 0 (85) 0 (147) 0 (215) 0 (252) 0 (346)
comp-2007-2-9 0 (1819) 48 (1800) 67 (2095) 106 (1805) 232 (1916)
comp-2007-2-10 0 (2091) 73 (2197) 110 (2293) 173 (2033) 264 (2120)
comp-2007-2-11 0 (288) 0 (433) 0 (496) 0 (572) 0 (681)
comp-2007-2-12 0 (474) 0 (663) 0 (744) 0 (865) 0 (1045)
comp-2007-2-13 0 (298) 0 (515) 0 (592) 0 (700) 0 (892)
comp-2007-2-14 0 (127) 0 (563) 0 (690) 0 (778) 12 (571)
comp-2007-2-15 0 (108) 0 (284) 0 (319) 0 (351) 0 (423)
comp-2007-2-16 0 (138) 0 (167) 0 (192) 0 (210) 0 (247)
comp-2007-2-17 0 (0) 0 (17) 0 (31) 0 (61) 0 (104)
comp-2007-2-18 0 (25) 0 (187) 0 (273) 0 (332) 0 (515)
comp-2007-2-19 0 (2146) 177 (2075) 275 (1916) 398 (1969) 549 (1989)
comp-2007-2-20 0 (625) 0 (811) 0 (844) 0 (884) 0 (1048)
comp-2007-2-21 0 (308) 0 (442) 0 (500) 0 (547) 0 (646)
comp-2007-2-22 636 (1808) 937 (1472) 1024 (1401) 1169 (1670) 1312 (1110)
comp-2007-2-23 0 (3101) 151 (3665) 262(4523) 396 (3383) 690 (3998)
comp-2007-2-24 0 (841) 0 (1212) 28 (1244) 89 (1018) 199 (1529)

which proved the most troublesome in all stages of the algorithm. Feasibility has also been achieved
in all runs with fifteen of the twenty-four instances. For instance-17 a perfect solution has also been
found in one run. Following on from observations made in previous sections, once again instances
1, 2, 9, 10, 19, 22, 23, and 24 prove to be the hardest problems to solve, with feasibility being found
in just 59%, 22%, 4%, 6%, 2%, 0%, 6%, and 35% of runs respectively.4 Note that the algorithm is
able to find feasibility in > 95% of runs with all remaining instances, however.

Earlier, in Section 3.3 it was suggested that when considering instances in which a large pro-
portion of neighbourhood moves were rejected, movements in the search space would be more
restricted, possibly making improvements to the candidate solution more difficult to achieve. At
this point, a relevant question to now ask is whether the same feature also applies when performing
optimisation according to the Soft Cost. To investigate this, in trials where a distance to feasibility
of zero was achieved, we recorded the proportion of all moves that were accepted during Stage 3,
together with the proportion by which the Soft Cost was ultimately reduced.5

The statistics collected here are displayed in fig. 3 where a weak positive, though statistically
significant, correlation between the two variables can be observed (a correlation of r = 0.53, using
a two-tailed test at the 1% level). Curiously, one particular group of smaller instances – namely
instances 7, 8, 15 and 16, which all have n = 200 and s = 500 – seems to go against this trend,
with the algorithm experiencing a low proportion of accepted moves and yet still achieving large
reductions in the Soft Cost (removing these four instances causes r to increase to 0.64). From these
admittedly limited results, we propose that there is some relationship between the restrictiveness
of the search space and the improvements in cost that are achievable, but there are certainly other
factors that will also have an effect here, including the shape of the cost landscape, the amount
of computation that is required for each application of the evaluation function, and, perhaps most
importantly, the amount of time that is ultimately allocated to this stage of the algorithm (obviously
this stage can be allocated more than the original T/3 seconds if the previous stages of the algorithm
are completed early).

Considering this latter point, in fig. 4 we illustrate the effects that differing time limits have on

4These percentages improve upon those reported in an earlier version of this paper, reported in (Lewis, 2008).
5We remember that for Stage 3 a move is “accepted” if the alteration to the timetable does not cause a violation

of any of the hard constraints.
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Figure 3: Scatter diagram showing the relationship between the proportion of accepted neighbour-
hood moves in Stage 3, and the resultant reduction in the Soft Cost (expressed as a proportion).
Each point in the graph is averaged across all runs with a particular instance where a Distance to
Feasibility of zero was achieved, with the exception of instance 22 where the run with the lowest
Distance to Feasibility of the 51 runs was used.
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Figure 4: Box plot demonstrating the relationship between the time allocated to Stage 3, and the
resultant reduction in the Soft Cost (expressed as a proportion). Results were gained from twenty
runs on instance comp-2007-2-16 for each time threshold 10 to 600 seconds, incrementing in steps
of 10.

the ability of the Stage 3 annealing process to reduce the Soft Cost. In order to eliminate noise,
only instance 16 is considered here – an instance that seemed to be quite easy for finding feasibility,
and yet still proved to be quite troublesome when trying to reduce the Soft Cost down to zero.
It is obvious from fig. 4 that as the time limit is increased (therefore providing a slower cooling)
the resultant reduction in the Soft Cost also increases. Note, however, that these improvements
seem to “tail off” and are only marginal beyond 200-or-so seconds. Note also that improvements
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of > 90% are quite rare on the whole, even when very generous amounts of run time are granted,
suggesting that this algorithm seems to encounter some difficulty in achieving perfect solutions in
this case. We will reflect on potential reasons for this in our discussions in Section 5.

5 Conclusions

In this paper, a three stage metaheuristic-based algorithm has been presented for the post enrolment-
based course timetabling problem used in track-2 of the Second International Timetabling Com-
petition. Crucially this algorithm is time-dependent, meaning that it is able to alter the intensity
of the search conducted in accordance with the amount of available run time granted. In practical
circumstances such a feature will be advantageous as users are not required to manually assign
values to parameters a priori, nor are they required to perform any sort of tuning procedure – a
strategy used by some other entrants in the competition.

We performed a comparison between this algorithm and the five official finalists of the compe-
tition (Cambazard et al., 2008; Chiarandini and Stützle, 2002; Atsuta et al., 2008; Mayer et al.,
2008; Muller, 2008). This was done by taking a random sample of ten runs on all instances and
incorporating the results into the ranking process used for choosing the competition winner. The
comparison reveals that our algorithm comes in 6th place with a rank-average of 38.9.6 For refer-
ence, the resultant rank-averages of the five finalists with these results included are, in order, 1st
place = 14.8; 2nd = 28.2; 3rd = 31.9; 4th = 33.6; and 5th = 35.6. Full results and further details
of these experiments are detailed in Appendix A.

One issue with this algorithm is that for Stages 2 and 3, in order to ensure that the constraints
satisfied in previous stages are not re-violated the proposed neighbourhood operators have been
restricted so that moves causing such violations are automatically rejected. In Stage 3, for example,
this means that the algorithm only searches in the space of feasible solutions. However, in this case,
by using a restricted neighbourhood operator there is no guarantee that all feasible solutions will
communicate with one another. In other words, the feasible-only search space may, in effect, be split
into a number of disjoint subspaces, with areas of non-feasibility – that cannot be traversed using
the current neighbourhood operator – occupying the space in-between. A practical implication of
this, as we saw in fig. 4, is that even if the algorithm is granted excess computation time, there will
be no guarantee of finding an optimal (i.e. perfect) solution, despite the fact that these problem
instances are all known to feature at least one. One way of increasing the freedom to move about the
feasible-only search space is obviously to try and increase the number of neighbourhood moves that
are accepted by the algorithm. This might be achieved, for example, by making use of a maximum
matching algorithm in order to dynamically assign events to rooms, thus maximising timeslot
occupancy (see, for example, the competition entries of Cambazard et al. (2008) and Chiarandini
et al. (2008)). Another strategy along similar lines would be to use a variety of different, albeit
more expensive, neighbourhood operators such as the Hungarian operator (Cambazard et al., 2008)
or the Kempe chain neighbourhood operator (Thompson and Dowsland, 1998; Chiarandini et al.,
2008). We suggest that it is these omissions that are the main contributors to the differences
in performance between this approach and the leading entries to the competition. Nevertheless,
certain aspects of the approach outlined in this paper have shown to be very successful, and the
combination of such aspects with features used in the other competition entries, particularly those
mentioned above, seems to offer a promising future research path.

References

Abramson, D., Krishnamoorthy, H., Dang, H., 1996. Simulated annealing cooling schedules for the
school timetabling problem. Asia-Pacific Journal of Operational Research 16, 1–22.

6Refer to the ITC2007 website for full listings of the other algorithms’ results and for details of this ranking
process.

13



Atsuta, M., Nonobe, K., Ibaraki, T., 2008. Itc-2007 track 2: An approach using general csp solver.
URL www.cs.qub.ac.uk/itc2007/winner/bestcoursesolutions/Atsuta et al.pdf

Brelaz, D., 1979. New methods to color the vertices of a graph. Commun. ACM 22 (4), 251–256.

Burke, E., Gendreau, M. (Eds.), 2008. Proceedings of the Seventh International Conference for the
Practice and Theory of Automated Timetabling. Universite de Montreal, Canada.
URL http://www.asap.cs.nott.ac.uk/patat/patat08

Cambazard, H., Hebrard, E., Osullivan, B., A., P., 2008. Local search and constraint programming
for the post-enrolment-based course timetabling problem. In: Burke and Gendreau (2008).
URL http://www.asap.cs.nott.ac.uk/patat/patat08

Chiarandini, M., Fawcett, C., Hoos, H., 2008. A modular multiphase heuristic solver for post
enrolment course timetabling. In: Burke and Gendreau (2008).
URL http://www.asap.cs.nott.ac.uk/patat/patat08
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Table 5: Results used in the comparison with the competition entries. For each instance, results
are ordered from best (1) to worst (10).
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A Comparison with Competition Results

Table 5 shows the results achieved by our algorithm within the specified time limit in a random
sample of ten runs on each problem instance. Note that the algorithm was executed “blindly” on
the hidden instances – that is, all refinements were made to our implementation before performing
runs on the hidden instances. This is consistent with the process used for officially ranking the
finalists of the competition.
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