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Abstract

In this paper, we propose novel local and global models of street network entropy that
measure levels of navigability given only limited local directional information. These models
are defined for individual locations and entire street networks. Both models are derived using
a generalised model of entropy from the field of game theory, which considers a decision-maker
attempting to perform a task in the presence of incomplete information. We argue that the
proposed models are more interpretable and useful than existing models of street network
entropy since they measure the uncertainty of navigation, which is the task street networks
are intended to facilitate. We demonstrate this utility by performing an empirical analysis of
the entropy properties of UK city street networks.
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1 Introduction

A street network is a type of transportation network corresponding to the set of streets contained
in a given geographical region such as a city boundary. The properties of street networks directly
influence many aspects of our society including where homes and services are located plus patterns
of travel. Therefore, modelling properties of street networks represents an important research
problem. There are several street network models that measure many types of properties including
topological, geometrical and centrality properties. Each of these models has different applications
and uses. For example, models of centrality may be used to help identify elements of a street
network that a large proportion of routes pass through and therefore it may be useful to limit
traffic congestion at these elements. In this work, we consider the problem of modelling the entropy
of street networks. In the context of information theory, entropy is a measure of the uncertainty
with respect to a given property (Gudmundsson and Mohajeri, 2013). The (Shannon) entropy of
a given property, modelled as a random variable X on the set {x1, . . . , xn} with probability mass
function p(x1), . . . , p(xn), is defined as follows:

−
n∑

i=1

p(xi) log p(xi) (1)

A street network is most commonly represented as a graph embedded in the plane (Barthélemy,
2011). As such, there exists a large array of entropy models for general graphs that can be applied
to street networks (Dehmer and Mowshowitz, 2011; Marin et al., 2022). However, these models do
not consider the spatial properties of street networks and are therefore rarely considered. Instead,
the two most commonly used models of street network entropy are defined with respect to the
properties of street length and orientation (Mohajeri and Gudmundsson, 2014; Boeing, 2019b).
These models have several useful applications because they have been demonstrated to be correlated
with other properties of interest. Firstly, it has been demonstrated that these models of entropy
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can be used to identify the time period during which the street network in question was constructed
(Gudmundsson and Mohajeri, 2013). Specifically, street networks constructed during older time
periods tend to be less structured and have higher entropy than those constructed during more
recent time periods. Secondly, these models of entropy can be considered an indicator of the
directness of shortest routes (ratio of street network distance to great circle distance) and how
easy it is to determine these routes given limited information. This is a consequence of the fact
that street networks with a grid pattern, which exhibit high levels of both these properties, have
relatively small entropy (Boeing, 2019b).

The principal purpose of a street network is to facilitate the task of navigating between locations.
In this work, we propose novel local and global models of street network entropy that measure
the navigability or uncertainty with respect to performing this task. Note that the model of
Shannon entropy in Equation 1 is defined for a property or random variable and not a task.
It cannot, therefore, be used to define a model of entropy defined for navigating. To overcome
this challenge we consider a generalised model of Entropy from the field of game theory that
measures the uncertainty with respect to a decision-maker attempting to perform a task in the
presence of incomplete information (DeGroot, 1962; Grünwald and Dawid, 2004). We use this
generalised model to derive the proposed models of entropy whereby we measure the uncertainty
with respect to a decision-maker attempting to navigate given only local direction information.
This information constraint is motivated by the fact that it is known to be an accurate model
of how humans navigate street networks (Bongiorno et al., 2021). Since the proposed models of
street network entropy measure the uncertainty with respect to navigation (as opposed to a more
abstract feature) we argue that these models are more interpretable than existing models. This in
turn increases the potential for useful analysis to be performed using these models. Furthermore,
to the authors’ knowledge, the proposed local model of street network entropy is the first of its
kind. The local nature of this model lends itself to many new useful applications. This includes
identifying locations in a street network that exhibit poor navigability and therefore may require
additional signage to prevent drivers, cyclists or pedestrians from taking incorrect turns.

The layout of this paper is as follows. In Section 2 we review related works on human navigation
and motivate the proposed models of street network entropy. In Section 3 we review necessary
background material on generalised entropy and, in turn, derive the proposed models. In Section 4
we demonstrate the usefulness of these models by performing an analysis of UK city street networks.
In doing so, we examine the relationships existing between the proposed models of street network
entropy, existing models of street network entropy, and other properties of street networks. Finally,
in Section 5 we conclude this work and discuss some limitations of the proposed models.

2 Related Works on Human Navigation

Human navigation has been widely studied in many fields including network science, geographi-
cal information science and cognitive psychology. In this section, we review existing works that
motivate the proposed models of street network entropy.

Individuals use many different criteria when selecting a route to navigate. This includes the
length of, the number of turns in, and the amount of congestion along the route (Golledge, 1995;
Golledge and Gärling, 2004). In many cases, the individual will have prior spatial knowledge of
the geographical region in question that will help to complete the navigation task. This spatial
knowledge is most commonly referred to as a cognitive map. A cognitive map will generally contain
information about the locations of landmarks, which can be defined as distinctive features in the
environment that help individuals to orient themselves (Siegel and White, 1975). Examples of
landmarks include a church or a pub. Apart from a cognitive map, individuals will commonly use
external sources of spatial knowledge to help navigation such as a GPS device and map (Corcoran
et al., 2014). In many cases, these sources will contain references to landmarks.

With incomplete spatial knowledge, an individual needs to intelligently reason and make infer-
ences to successfully navigate. It has been demonstrated that individuals have varying abilities for
successfully navigating in this context, and this ability is correlated with factors including gender,
age, economic wealth and gender inequality (Coutrot et al., 2018). Note that many experiments
that evaluate an individual’s ability to navigate are performed in simulation, which is predictive
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of an individual’s ability to navigate in the real-world (Coutrot et al., 2019). Coutrot et al. (2022)
found that individuals that grew up in geographical regions where the corresponding street network
had higher entropy had a superior ability to navigate more complex environments. In this work
street network entropy was defined with respect to the property of street orientation.

It has been hypothesised that, with incomplete spatial knowledge, individuals will use heuristics
to navigate street networks (Bongiorno et al., 2021). A heuristic is a useful method for making deci-
sions when there are insufficient resources or knowledge for making an optimal decision. Hochmair
(2005) and Lee and Holme (2012) proposed a heuristic that greedily navigates in the direction of
the destination. Bongiorno et al. (2021) later empirically demonstrated, through an analysis of
trajectory data, that this heuristic accurately models the navigation behaviour of humans. This
finding motivates our proposed models of street network entropy, which will assume the use of this
heuristic for navigation.

3 Navigability Entropy

This section is structured as follows. In Section 3.1 we describe a generalised model of entropy
from the field of game theory. In Section 3.2 we use this model to derive local and global models
of street network entropy.

3.1 Generalised Entropy

The generalised model of entropy described in this section uses notation and terminology drawn
from (Grünwald and Dawid, 2004).

We consider the following decision problem, which involves a game between a decision-maker
and an adversary (Grünwald and Dawid (2004) refer to the adversary as “nature”). Let X denote
a finite set of states, A denote a finite set of actions and L : X ×A → R denote a loss function. A
decision-marker is required to select an action a ∈ A. Following this, the adversary will reveal a
state x ∈ X . The decision-maker will, in turn, then suffer a loss L(x, a). Note that the adversary
does not consider the action a before revealing the state x. Grünwald and Dawid (2004) refer to
the tuple (X ,A, L) as a basic game.

Let Γ denote the set of probability distributions defined on X , and let X be a random variable
defined on X with probability distribution P ∈ Γ. If we assume that the adversary samples x ∈ X
using the random variable X, the undesirability for the decision-maker to select any action a ∈ A is
equal to the expected loss. This is defined as follows, where p denotes the probability mass function
of P :

L(P, a) =
∑
x∈X

p(x)L(x, a). (2)

An action a ∈ A that minimises Equation 2 is known as a Bayes act against P . The Bayes
loss H(P ) of a distribution P ∈ Γ is defined as follows:

H(P ) = inf
a∈A

L(P, a). (3)

In words, the Bayes loss is the optimal expected loss when the decision-maker selects an action
a ∈ A. The Bayes loss generalises many important measures of uncertainty. This includes the
Shannon entropy where A = P (that is, a equals the probability mass function p) and L(x, a) =
− log a(x). It also includes the variance where A = X and L(x, a) = ∥x − a∥22. For this reason,
Equation 3 is also referred to as the generalised entropy. This is the term we use for the remainder
of this article (Grünwald and Dawid, 2004).

3.2 Navigability Entropy

In this section, we describe how generalised entropy can be used to define local and global models
of street network entropy. Let G = (V,E) be the edge-weighted directed multigraph representation
of a given street network where the set of vertices V correspond to intersections and dead-ends,
the set of edges E correspond to street segments, and the weighting function w : E → R maps
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(a) (b)

Figure 1: Two toy street network graphs are displayed in (a) and (b). The graph in (a) has a
perfect grid pattern and therefore contains no cul-de-sacs. Each edge is bidirectional and has a
length equal to 1. The graph in (b) does not have a perfect grid pattern and contains several
cul-de-sacs. Each edge is bidirectional and has a length equal to 1 or 0.5.

each edge to its length, measured in metres. Let N : V → 2V (the powerset of V ) denote a map
from a vertex to the set of its adjacent vertices.

We assume that a decision-maker wants to navigate from a source vertex s ∈ V to a destination
vertex d ∈ V along a shortest route in G. Note that more than one shortest route may exist between
a given pair of source and destination vertices. Let S : V → 2V denote a mapping from a vertex
appearing in a shortest route to the set of vertices that appear immediately after that vertex in a
shortest route. To illustrate this mapping, consider the toy street network displayed in Figure 1(a).
If we consider the case where the source vertex s equals v1 and the destination vertex d equals v8,
there are three shortest routes of length 3. These are the path v1, v4, v7, v8, the path v1, v4, v5, v8
and the path v1, v2, v5, v8. In this context, S(v1) = {v2, v4}, S(v2) = {v5} and S(v4) = {v5, v7}.
For the decision-maker to successfully navigate a shortest route, when at a vertex vi in a shortest
route, they must select an element from N(vi) that is also an element of S(vi). In layman’s terms,
they must select a vertex that keeps them on a shortest route to the destination d.

We model the above decision problem as a basic game (X ,A, L) as follows. First, we define X
to equal the set 2V . When the decision-maker is at vertex vi in a shortest route, the state x ∈ X
is then equal to the set S(vi).

The definition of A is based on the assumption that the decision-maker has access to only
local bearing or direction information when navigating. Let lat : V → R and lng : V → R
be mappings from vertices to corresponding latitude and longitude coordinates respectively. The
bearing between two vertices equals the angle in degrees (clockwise) between north and the geodesic
line from the first to the second vertex. It is defined by the function β : V × V → [0, 360], where
λ = lng(v2)− lng(v1):

β(v1, v2) = atan2(sin(λ) cos(lat(v2)),

cos(lat(v1)) sin(lat(v2))− sin(lat(v1)) cos(lat(v2)) cos(λ)).
(4)

The bearing difference between two bearings is defined by the function ∆β : [0, 360]× [0, 360] →
[0, 180]:

∆β(a1, a2) = |(a1 − a2 + 180)mod 360− 180|. (5)

When at a vertex vi in a shortest route, we assume the decision-maker can compute ∆β between
the vertex vi and each vertex in the set N(vi). We also assume that they can compute ∆β between
the vertex vi and the destination vertex d. These values could, for example, be computed using
a GPS device given knowledge of the latitude and longitude coordinates for d. As discussed in
Section 2, it has been demonstrated that a heuristic used by individuals when navigating is to
select the vertex in N(vi) that minimises the angle difference between the bearing from vi to this
vertex and the bearing from vi to d (Hochmair, 2005; Lee and Holme, 2012; Bongiorno et al.,
2021). In layman’s terms, this corresponds to navigating, as far as possible, in the direction of the

4



destination d. The heuristic in question is defined by the function f : V × V → V :

f(vi, d) = argmin
v′∈N(vi)

∆β(β(vi, v
′), β(vi, d)) (6)

To illustrate this heuristic consider again the toy street network graph displayed in Figure 1(a),
and the case where the source vertex s equals v1 and the destination vertex d equals v8. When at
vertex v1, the heuristic will select v2 or v4 as the next vertex. When at vertex v2, the heuristic
will select v5 as the next vertex. We assume that the decision-maker uses the above heuristic when
attempting to navigate a shortest route. We model this assumption by defining the set of actions
A as the set of functions containing the single element f . That is, A = {f}. This assumption
allows us to simplify the definition of generalised entropy defined in Equation 3 as follows:

H(P ) = inf
a∈A

L(P, a)

=L(P, f).
(7)

This equality results from the fact that A only contains a single element f and, therefore, the
infimum over this set is f . Finally, we define the loss function L : X ×A → R as follows, where 1
is the indicator function:

L(x, a) = 1(a(vi, d) /∈ x) (8)

The above loss function means that when the decision-maker is at a vertex vi in a shortest route,
they will incur a loss of 0 if the function a ∈ A returns an element in the set S(vi). Otherwise,
the decision-maker will incur a loss of 1. In layman’s terms, they incur zero loss if the function a
keeps them on a shortest route to d.

As previously discussed, in this article we define both local and global models of street network
entropy. Here, the local model is defined for individual vertices while the global model is defined
with respect to an entire street network. The definition of these models is presented in the following
two subsections and differs in how the probability mass function P is defined.

3.2.1 Global Model

We derive the global street network entropy model as follows. We define the probability mass
function P to equal the probability mass function with which X occurs when the decision-maker
is navigating the shortest routes. There are 2

(|V |
2

)
pairs of source and destination vertices and

at least this number of shortest routes. This makes it infeasible to compute the expectation
in Equation 2 exactly when the size of |V | is large. Here, we therefore use plug-in estimation,
which involves generating a random sample of shortest routes and computing the expectation
with respect to this sample. To do this, we sample with replacement m pairs of distinct source
and destination vertices {(s1, d1), . . . , (sm, dm)} from V . For each pair (sj , dj) we compute using
Dijkstra’s algorithm a shortest route vj1, . . . , v

j
n(j) from sj to dj where n(j) equals the number of

vertices in the path, vj1 = sj and vjn(j) = dj . Note that if more than one shortest path exists

between sj and dj , one of these is selected arbitrarily. The overall complexity of this calculation is
therefore O(m(|E|+ |V | lg |V |)), where O(E|+ |V | lg |V |) is the complexity of Dijkstra’s algorithm
using a Fibonacci heap. Given this, the plug-in estimation of the expected loss is defined as follows:

L(P, a) ≈ 1

m

m∑
j=1

1

n(j)− 1

n(j)−1∑
i=1

L(S(vji ), a). (9)
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Using this, we can now derive a plug-in estimation of global street network entropy:

H(P ) =L(P, f)

≈ 1

m

m∑
j=1

1

n(j)− 1

n(j)−1∑
i=1

L(S(vji ), f)

=
1

m

m∑
j=1

1

n(j)− 1

n(j)−1∑
i=1

1(f(vji , d) /∈ S(vji ))

=
1

mn(j)−m

m∑
j=1

n(j)−1∑
i=1

1(f(vji , d) /∈ S(vji )).

(10)

Here, the first equality is the simplified definition of generalised entropy from Equation 7. The
next approximate equality is formed by substituting the plug-in estimation defined in Equation 9.
The next equality results from substituting the loss defined in Equation 8. From the final equality,
we see that estimating global entropy reduces to the task of computing the proportion of times
that the heuristic f does not select a vertex that keeps the decision-maker on a shortest route.
This model returns a real value in the interval [0, 1], where larger values indicate larger entropy. In
this context, a larger entropy value indicates that shortest routes contained in the street network
in question are more difficult to navigate using the heuristic f .

The toy street network displayed in Figure 1(a) has a global entropy value of 0. This is a
consequence of the fact that the heuristic f will navigate shortest routes in a perfect grid pattern in
all cases. In contrast, consider the toy street network displayed in Figure 1(b), which contains many
cul-de-sacs. The global entropy value for this street network is greater than 0 and approximated
by our model to equal 0.32. This is a consequence of the fact that the heuristic f does not navigate
shortest routes in all cases. For example, consider the case where the source vertex s equals v4
and the destination vertex d equals v8. When at vertex v4, the heuristic will select vertex v10
as the next vertex. This vertex corresponds to a cul-de-sac and is not on a shortest route to the
destination v8.

3.2.2 Local Model

We now derive the local vertex entropy model as follows. For a given vertex s, we define the
probability mass function P to equal the probability mass function with which X occurs when the
decision-maker is located at s and is navigating to a vertex d ̸= s. We again use plug-in estimation
to estimate this value. To do this, we sample with replacement m vertices from the set V − {s}.
Let us denote this set of vertices {d1, . . . , dm}. For each pair (s, dj) we now compute a shortest
route vj1, . . . , v

j
n(j) from s to dj . If more than one shortest route exists, we again select one of these

paths uniformly at random. Given this, the plug-in estimation of the expected loss is defined as
follows:

L(P, a) ≈ 1

m

m∑
j=1

L(S(vj1), a). (11)

Using this, we can now derive a plug-in estimation of local street network entropy with respect
to the vertex s:

H(P ) =L(P, f)

≈ 1

m

m∑
j=1

L(S(vj1), a)

=
1

m

m∑
j=1

1(f(vj1, d) /∈ S(vj1)).

(12)

This calculation involves using Dijkstra’s algorithm to compute a shortest path tree connecting s
to each of the m selected vertices. Doing this for each s ∈ V leads to an overall complexity of
O(|V |(|E|+ |V | lg |V |)).
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From the final approximate equality above, we see that estimating local vertex entropy reduces
to computing the proportion of times that, when at the vertex s, the heuristic f does not select
a vertex that keeps the decision-maker on a shortest route. Similar to the global street network
entropy model defined above, this model returns a real value in the interval [0, 1], where larger
values indicate larger entropy.

Note that a vertex with degree one, which corresponds to a cul-de-sac, will always have a local
vertex entropy value of 0.0. This is because its single neighbouring vertex must be on a shortest
route if one exists. Also observe that computing the local entropy model can be computationally
expensive for large street networks because it requires computing Equation 12 for each vertex in
the street network.

Each vertex in the toy street network displayed in Figure 1(a) has a local vertex entropy value
of 0. Again, this is a consequence of the fact that the heuristic f will navigate shortest routes in
a perfect grid pattern in all cases. In contrast, each vertex in the toy street network displayed in
Figure 1(b) has a local vertex entropy value greater than 0.0 apart from the vertices with degree
one.

The local and global models of street network entropy presented above are related in the
following way. The global model equals the expected loss L with respect to all decisions made
when navigating from a random source vertex to a random destination vertex. On the other hand,
the local model equals the expected loss L with respect to the first decision when navigating from
a fixed source vertex to a random destination vertex. Note that, since both the local and global
models approximate expected values, the entropy values in question for cities of different shapes
and sizes can be directly compared without any form of normalisation.

4 Results and Analysis

In this section, we use the proposed models of local vertex and global street network entropy to
perform an analysis of UK city street networks. Unfortunately, there exists no consensus on how to
define the boundary of a city and, in turn, the boundary of a city street network (Gudmundsson and
Mohajeri, 2013). In this work, we choose to define the boundaries of UK city street networks using
the Urban Centre Database (UCD), which is a project supported by the European Commission’s
Joint Research Centre and Directorate-General for Regional and Urban Policy (Florczyk et al.,
2019). This database contains boundaries for the majority of the world’s major urban areas.
These boundaries are determined by fusing census population and remotely sensed image data. At
the date of writing, the UK contains 70 cities. However, some of these are very small in terms
of geographical area and population and therefore are not represented in the UCD. The city of
Armagh, which has a population of less than 15 thousand, is one such city. Furthermore, in
several cases, a set of spatially close or touching cities are represented as a single urban area in the
database. For example, the cities of Wolverhampton and Birmingham are represented as a single
urban area entitled Birmingham. In this work, we only considered the 48 UK cities represented
in the UCD. Given the UCD city boundaries, for each city we obtained the corresponding street
network of drivable public streets from OpenStreetMap (OSM) which is a crowdsourcing project
for geographical data (Boeing, 2017). Table 1 displays the name of each city considered, plus the
number of vertices (|V |), the number of edges (|E|) and the geographical area (measured in km2)
of the corresponding street networks.

As previously noted, both the local and global models of street network entropy use a plug-
in estimate parameterised by a value m. In our analysis, we computed local and global street
network entropy using a value of m equal to 200 and 5,000 respectively. To better understand
the properties of global street network entropy, for each city street network we also computed
the street segment orientation entropy, the intersection density and the route directness. Street
segment orientation entropy is the most commonly used model of street network entropy. It is
therefore instructive to understand the relationship between this and the proposed models. We
computed the street segment orientation entropy of each city street network using the algorithm
described by Boeing (2019b) and implemented by the OSMnx software library (Boeing, 2017).
This algorithm first computes the discrete empirical distribution of street network orientations,
where this distribution contains 36 bins each representing a 10-degree interval of orientation. It
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City |V | |E| Area City |V | |E| Area
Aberdeen 6060 14228 57 Lancaster 3303 7599 37
Bangor 2083 4555 20 Leeds 49165 110377 472
Bath 2275 5032 22 Leicester 13024 29152 122
Belfast 17378 39283 163 Lincoln 4287 9228 38
Birmingham 69322 154165 668 Liverpool 45381 103130 418
Brighton 8342 19886 108 London 157835 364888 1865
Bristol 19731 43677 169 Manchester 74909 171593 674
Cambridge 3382 7307 37 Newcastle 27877 63378 241
Canterbury 1677 3495 15 Newport 4147 9089 57
Cardiff 10735 23810 109 Norwich 6801 14752 55
Carlisle 2046 4639 17 Nottingham 19848 43862 170
Chelmsford 3298 6929 31 Oxford 3315 7376 46
Chester 3036 6733 27 Peterborough 6897 14284 58
Coventry 13412 29212 126 Plymouth 8168 18048 88
Derby 8716 18931 83 Portsmouth 13325 29544 166
Derry 3172 6719 28 Preston 9532 21021 79
Dundee 5500 12761 62 Sheffield 22561 51089 247
Durham 1791 4782 99 Southampton 10310 22592 144
Edinburgh 11323 26537 123 Southend-on-Sea 5681 13102 75
Exeter 4248 9034 31 St Albans 2265 5062 27
Glasgow 29313 68232 306 Stoke-on-Trent 12448 27751 118
Gloucester 6287 13264 45 Sunderland 6599 15314 59
Hereford 1761 3841 17 Swansea 4049 9114 60
Hull 11142 24012 102 Worcester 3224 6984 30

Table 1: Details of the 48 UK city street networks considered in this study. For each street network,
the number of vertices (|V |), the number of edges (|E|) and the geographical area (measured in
km2) is provided.

then computes the Shannon entropy of this distribution. The intersection density of a given street
network equals the number of vertices in the street network divided by the size of the geographical
area in question. Intersection density is considered an indicator of the level of connectivity and
development of a street network (Dill, 2004). This is a consequence of the fact that street networks
with a high density of intersections contain a larger number of distant paths and, in turn, a
greater probability for the existence of more direct paths. Finally, the route directness of a given
street network equals the ratio of shortest route distances to great circle distances (Huang and
Levinson, 2015; Giacomin and Levinson, 2015; Boeing, 2019a). Route directness is considered a
measure of the level of efficiency of a street network because more direct routes contain fewer
detours. In this work, we approximate the route directness of a street network by sampling with
replacement 1,000 distinct source and destination vertex pairs and computing the mean directness
of the corresponding shortest routes. Table 2 displays the street segment intersection density
values, the orientation entropy values, the route directness values and the proposed global street
network entropy values for each city.

An analysis of the global entropy values for each of our city street networks provides some
interesting insights. The mean of these values is 0.144. This is a relatively low global entropy
value and indicates that the vast majority of decisions when navigating shortest routes can be
made correctly using only local direction information. On the other hand, the variance of these
values is quite large. The city of London has the lowest global entropy value of 0.088 while the city
of Carlisle has the highest global entropy value of 0.191. This indicates that it is more than twice
as difficult to navigate shortest routes using local direction information in the latter compared
to the former. This can be attributed to the fact that the city of Carlisle, which is displayed in
Figure 2, contains a relatively large number of cul-de-sacs adjacent to important transportation
corridors. Three of these are highlighted in the figure. As previously illustrated using the toy
street network in Figure 1(b), cul-de-sacs frequently do not belong to shortest routes and, in turn,
contribute to higher entropy. Furthermore, the western and eastern regions of the street network
are separated by a river, and all routes between these regions involve crossing bridges in the north.
This requirement to travel north when travelling east to west and vice versa is not captured by
the direction-based heuristic: in such cases, the heuristic will recommend moving in an easterly
or westerly direction instead of a northerly direction. Figure 3 displays the street network for the
city of Dundee which is of a similar size to the street network for the city of Carlisle. However,
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City ID OE RD NE City ID OE RD NE
Aberdeen 106.06 3.54 1.38 0.132 Lancaster 89.08 3.55 1.53 0.178
Bangor 103.66 3.54 1.53 0.150 Leeds 104.01 3.58 1.29 0.112
Bath 103.27 3.57 1.56 0.174 Leicester 106.64 3.54 1.35 0.113
Belfast 106.08 3.58 1.37 0.113 Lincoln 112.69 3.57 1.46 0.149
Birmingham 103.63 3.58 1.24 0.093 Liverpool 108.34 3.58 1.42 0.143
Brighton 77.21 3.47 1.31 0.100 London 84.61 3.57 1.29 0.088
Bristol 116.58 3.58 1.38 0.124 Manchester 111.12 3.58 1.27 0.108
Cambridge 91.33 3.55 1.57 0.151 Newcastle 115.67 3.55 1.48 0.156
Canterbury 111.71 3.52 1.63 0.159 Newport 72.62 3.58 1.63 0.178
Cardiff 98.3 3.58 1.48 0.157 Norwich 123.51 3.57 1.4 0.123
Carlisle 120.04 3.56 1.59 0.191 Nottingham 116.61 3.58 1.39 0.127
Chelmsford 106.3 3.57 1.58 0.162 Oxford 72.0 3.55 1.5 0.153
Chester 112.22 3.57 1.6 0.179 Peterborough 118.8 3.57 1.63 0.161
Coventry 106.32 3.57 1.36 0.131 Plymouth 92.58 3.56 1.48 0.152
Derby 104.88 3.58 1.51 0.154 Portsmouth 80.21 3.5 1.7 0.171
Derry 112.51 3.55 1.75 0.187 Preston 120.41 3.54 1.48 0.138
Dundee 88.46 3.51 1.33 0.114 Sheffield 91.22 3.58 1.35 0.125
Durham 18.06 3.19 1.32 0.127 Southampton 90.36 3.58 1.54 0.143
Edinburgh 91.81 3.54 1.34 0.133 Southend-on-Sea 75.69 3.45 1.38 0.130
Exeter 136.74 3.58 1.58 0.158 St Albans 83.82 3.58 1.49 0.150
Glasgow 95.78 3.56 1.37 0.131 Stoke-on-Trent 105.33 3.57 1.38 0.122
Gloucester 139.52 3.55 1.54 0.174 Sunderland 111.66 3.52 1.44 0.132
Hereford 103.41 3.57 1.62 0.189 Swansea 67.31 3.57 1.49 0.155
Hull 109.1 3.52 1.4 0.139 Worcester 107.31 3.56 1.63 0.186

Table 2: The intersection density (ID) values, the street segment orientation entropy (OE) values,
the route directness (RD) values, and the global street network entropy (NE) values for each city
street network are displayed.

this street network has a significantly lower global entropy value of 0.114. This can be attributed
to the fact that this street network contains a relatively small number of cul-de-sacs adjacent to
important transportation corridors. Furthermore, the environment in which the street network
exists does not contain any barriers, such as a river, so shortest routes are more easily determined
using only directional information.

The analysis of global entropy values could be used by urban planners to identify those cities
that are more difficult to navigate and therefore in need of additional signage. It could also be
used by urban planners to help suggest changes or additions to a given street network structure
that improves navigability. It is likely that in some situations a trade-off exists between improving
the navigability of a city and improving other aspects of navigation such as the length of shortest
routes.

Table 3 displays the Pearson and Spearman’s rank correlation between the global entropy values
and the street segment orientation entropy values, the intersection density values and the route
directness values for our sample of cities. Each cell displays the correlation statistic in question,

Figure 2: The street network for the city of Carlisle is displayed. This street network has the
highest global entropy value of all city street networks considered. This can in part be attributed
to a significant number of cul-de-sacs adjacent to important transportation corridors. A number
of these are highlighted in the figure. Cul-de-sacs frequently do not belong to shortest routes and,
in turn, contribute to higher entropy.
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Figure 3: The street network for the city of Dundee is displayed. This street network has one of the
smallest global entropy values of all city street networks considered. This can in part be attributed
to a relatively small number of cul-de-sacs adjacent to important transportation corridors.

Orientation Intersection Route
entropy density directness

Pearson 0.14, 0.13, (-0.13, 0.31) 0.15, 0.28, (-0.10, 0.36) 0.91, < 0.001, (0.86, 0.93)
Spearman -0.09, 0.36, (-0.12, 0.32) 0.13, 0.35, (-0.15, 0.41) 0.92, < 0.001, (0.88, 0.95)

Table 3: The Pearson and Spearman’s rank correlation between the global entropy values and the
street segment orientation entropy values, the intersection density values and the route directness
values. Each cell displays the correlation statistic in question, followed by the p-value and the 95%
confidence interval.

followed by the p-value and the 95% confidence interval. The correlation between the global
street network entropy values and the street segment orientation entropy values is weak and not
statistically significant. This indicates that the former model measures a novel aspect of street
network entropy even though both models are a function of direction information. The correlation
between the global street network entropy values and the intersection density values is also weak
and not statistically significant. This indicates that a greater degree of connectivity does not imply
greater navigability. Finally, the correlation between the global street network entropy values and
the route directness values is strong and statistically significant. This indicates that street networks
that have more direct routes and, in turn, are more efficient, have lower entropy with respect to
the task of navigating.

Figure 4(a) displays a histogram of the local vertex entropy values corresponding to the Cardiff
city street network. Recall that these values equal the proportion of times that, when at the vertex
in question, the direction-based heuristic does not select a vertex that keeps the decision-maker on
a shortest route. The histogram is left-skewed, with a long tail to the right. Of the 10,735 vertices
in the street network, 3,806 vertices (35%) have an entropy value equal to 0.0 while 765 vertices
(7%) have an entropy value greater than or equal to 0.9. This demonstrates that, while a large
percentage of vertices can be successfully navigated using only direction information, a significant
percentage cannot.

Figure 5(a) displays the 2% of vertices that have the greatest local vertex entropy values. The
two regions highlighted in this figure using blue dashed boxes are displayed in Figures 6(a) and
6(c). The regions in question correspond to a suburban residential region in the northwest, and
a city-centre region respectively. As discussed previously, a vertex corresponding to a cul-de-sac
will always have a local vertex entropy value of 0.0. Although some vertices identified in the above
figures may appear to correspond to cul-de-sacs, they are not. Instead, this is a consequence of the
red dots covering corresponding neighbouring streets. We can see that the suburban residential
region has a significantly higher density of vertices with large entropy values than the city-centre
region. This is a consequence of the fact that, by design, residential regions contain a relatively
large number of streets leading to cul-de-sacs.

The local entropy model has many potential applications. It could potentially be used to help
recommend routes that are easier to navigate and, in turn, easier to describe. It could also be
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(a) (b)

Figure 4: Histograms of the local vertex entropy and vertex betweenness centrality values for the
Cardiff city street network are displayed in (a) and (b) respectively.

used to identify vertices where drivers are likely to frequently take an incorrect turn and therefore
indicate a need for different road layouts or new signage. To help identify these vertices, we
computed the vertex-wise product of local vertex entropy values and vertex betweenness centrality
values. The betweenness centrality for a vertex equals the percentage of shortest routes that pass
through that vertex (Brandes, 2001). Vertices with a large corresponding product value are those
that are both more likely to be travelled frequently and more likely for an incorrect turn to be
made at. Figure 4(b) displays a histogram of the betweenness centrality values corresponding to the
Cardiff city street network. The histogram is skewed to the left indicating that most vertices have
small centrality values. Figure 5(b) displays the 2% of street network vertices that have the greatest
product of entropy and betweenness centrality values. Figures 6(b) and 6(d) display the same two
highlighted regions considered above. By examining these figures we can identify the vertices that
exist along important navigation corridors and have high entropy. For example, the most northerly
vertex identified in Figure 6(d) corresponds to an intersection along a major navigation corridor
that leads to a cul-de-sac. If not already in place, the street network intersections in question may
benefit from clear signage to prevent drivers from frequently taking incorrect turns.

5 Conclusions

This article has proposed new models of street network entropy that are defined with respect to
both individual network vertices and entire street networks. These models measure the uncertainty
of navigating given only local direction information. This is distinct from existing models of street
network entropy which, instead, measure the uncertainty of more abstract properties including
street segment direction. Since navigating is the very task that street networks are intended to
facilitate, we argue that the proposed models are more interpretable and this, in turn, increases
the potential for useful analyses to be performed.

Despite the many potential applications, the proposed models have some limitations that should
be considered if attempting to implement these applications. The proposed models assume that
individuals navigate using only directional information. However, in many cases, individuals use
other forms of information including landmarks, street signage, prior knowledge of the geographical
region and satellite navigation systems. Further research is necessary to determine and model how
humans integrate and reason using these different forms of information when navigating.

Code Availability Statement - The Python code used to compute the global and local model
values described in Sections 3.2.1 and 3.2.2 is openly available on figshare at https://figshare.
com/articles/software/Navigability_Entropy_Model_of_Street_Networks/21593688.

Conflicts of Interest - The authors declare no conflict of interest.
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(a) (b)

Figure 5: The Cardiff street network is displayed in both figures (a) and (b). In the former figure,
the 2% of vertices that have the greatest local entropy value are represented by red dots. The
local entropy of a vertex equals the likelihood of one taking an incorrect turn at that vertex when
navigating. In the latter figure, the 2% of vertices that have the greatest product of local entropy
value and betweenness centrality value are represented by red dots. The betweenness centrality for
a vertex equals the percentage of shortest routes that pass through that vertex. The two regions
highlighted in these figures using blue dashed boxes are examined in Figure 6.

Ethical statement - This article does not contain any studies with human or animal participants.
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