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Abstract. In this paper we consider the problem of determining fixed-
length routes on a street map that start and end at the same location.
We propose a heuristic for this problem based on finding pairs of edge-
disjoint shortest paths, which can then be combined into a circuit. Var-
ious heuristics and filtering techniques are also proposed for improving
the algorithm’s performance.

1 Introduction

The task of finding fixed-length routes on a map has various practical applica-
tions in everyday life. For example, we may want to go on a 10 km run, organise
a cycling tour, or we may need to quickly determine a walk from our house in
order to complete our daily number of steps as determined by our fitness tracker.

In practical circumstances, routes of a specific length are often quite easy to
determine. As a trivial example, we may choose to travel back and forth on the
same street repeatedly until the required distance has been covered. Similarly,
we might also choose to perform “laps” of a city block. In this paper, we want
to consider more attractive routes that avoid repetition. Specifically, we want
to avoid routes that ask the user to travel along a street or footpath more than
once. Two examples of such routes are shown in Figure 1, using Times Square
in New York City as a starting point.

To define this problem more formally, it is useful to first review some standard
definitions from graph theory. Let G = (V,E) be an undirected edge-weighted
graph with n vertices and m edges, and let w(u, v) denote the weight (or length)
of an edge {u, v} ∈ E.

Definition 1. A walk is a series of incident edges in a graph. A trail is a walk
with no repeated edges. A path is a trail with no repeated edges or vertices.

It is also usual to add the prefix u-v to the above terms to signify a walk/trail/path
that starts at vertex u and finishes at vertex v. The following terms can then
also be used in cases where u = v.

Definition 2. A u-v-walk/trail/path is considered closed whenever u = v. Closed
trails are usually known as circuits; closed paths are usually known as cycles.



Fig. 1. Starting from Times Square (bottom-left) in New York City, the above map
shows a 5 km (red) circuit and an 8 km (green) circuit. Central Park is at the top of
the figure; the East river is at the bottom right.

Similarly to the above, the term u-circuit (cycle) can be used to denote a circuit
(cycle) that contains the vertex u. We can also extend this to multiple vertices:
for example, a u-v-circuit is a circuit seen to contain vertices u and v.

The problem considered in this paper can now be stated as follows:

Definition 3. Let G = (V,E) be an undirected edge-weighted graph, s ∈ V
be a source vertex and k be a required length. The k circuit problem involves
determining an s-circuit C in G such that the total length of its edges L(C) does
not exceed k, and k − L(C) is minimal.

In this paper, note that we focus on undirected graphs only. This is appro-
priate for practical applications that involve determining jogging and walking
routes, though it is not sufficient in applications involving one-way streets. We
also define our problem so that circuits with lengths exceeding k are disallowed.
This again comes from practical considerations in that it is often easier to add
a little extra distance to a route (e.g. by walking up and down a street), than it
is to shorten it.

The examples in Figure 1 show optimal solutions for k = 5000 m and 8000 m
using Times Square as the source vertex. These particular cases are not cycles
because certain vertices (intersections on the map) are visited more than once;
however, they are both circuits, in that no edge (road section) is traversed more
than once.

From a computational perspective very little work seems to have been con-
ducted on the problem of finding fixed-length circuits and cycles in edge-weighted



graphs. One recently suggested heuristic for cycles is due to Willems et al. [11]
who use an adaptation of Yen’s algorithm [12]. The basic idea is to calculate the
shortest path between two vertices, followed by the second shortest path, the
third shortest path, and so on. The algorithm then halts when a path close to
the required length has been identified. To calculate a cycle containing a specific
source vertex v, a special dummy vertex v′ is added to the graph. Appropriate
v-v′-paths are then sought.

Complexity results are also known. For unweighted graphs, the number of
walks of length k between pairs of vertices can be found by taking the (binary)
adjacency matrix of a graph G and raising it to the kth power. Currently, the best
known algorithms for matrix multiplication operate in approximately O(n2.3) [4],
so for large values of k the resultant complexity can be quite high at O(kn2.3).
Basagni et al. [1] have also noted that the problem of calculating a u-v-walk
of length k can be solved in polynomial time when using unweighted graphs,
providing that k = nO(1); however, the problem is NP-hard with edge-weighted
graphs.

For circuits and cycles, similar complexity results exist. The task of iden-
tifying a circuit in a graph G can be seen as the problem of identifying an
Eulerian subgraph in G (recall that an Eulerian graph is a connected graph in
which the degrees of all vertices are even). However, the problem of identifying
the longest Eulerian subgraph in G is known to be NP-hard, both for weighted
and unweighted graphs [8]. This tells us that our k circuit problem is also NP-
hard, since it is equivalent to the longest Eulerian subgraph problem whenever
k ≥

∑
{u,v}∈E w(u, v). Similar reasoning can also be applied to the problem of

finding cycles of length k in a graph, due to its relationship with the NP-hard
Hamiltonian cycle problem.

In this paper we propose a heuristic for the k circuit problem with a par-
ticular focus on tackling graphs resembling maps of roads and footpaths. Our
intention is for this heuristic to be fast while also producing accurate and visually
pleasing solutions. In the next section we develop the overall framework of our
algorithm. Section 3 then discusses methods for processing problem instances.
In Section 4 we then analyse the performance of our methods, before showing
how this performance can be further improved in Section 5.

2 Forming Circuits

In this paper our proposed strategy for the k circuit problem is to construct
solutions by generating a pair of edge-disjoint paths between the source vertex s
and a particular target vertex t. In an undirected graph, the union of these two
s-t-paths forms an s-t-circuit. If these paths also happen to be vertex disjoint,
then their union will also be an s-t-cycle. The problem now involves identifying
the most appropriate target vertex—that is, the vertex t ∈ V for which the sum
of the lengths of the two s-t-paths is closest to, but not exceeding k.

A single path between a pair of vertices can be formed in various different
ways. One strategy is to use depth first search, though this can often produce
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Fig. 2. (a) The shortest s-t-path in an example graph G; (b) a modified version of G
and the corresponding shortest s-t-path (determined via Modified-Dijkstra); (c) the
resultant s-t-circuit (cycle) formed by “unweaving” the two paths.

long meandering paths that, for this application, may well be unattractive to the
user. A better alternative is breadth first search, which generates paths between
vertices containing the minimum numbers of edges. In our case, however, we
choose to focus on using the shortest paths between vertices (in terms of the
sum of the edge-weights within the path), as doing so seems to result in simpler-
looking paths that involve less crisscrossing. The production of such paths can
be achieved via various well-known polynomial time algorithms, such as those
of Bellman-Ford [3] and Moore [6], which both feature a complexity of O(nm).
The approach we follow here, though, is the more efficient method of Dijkstra [5],
which has a complexity of O(m lg n) when a binary heap is used for its priority
queue [3].

An obvious way of determining two paths between s and t is to produce a
single s-t-path, remove this path’s edges from the graph, and then find a second
s-t-path. However, this approach has faults. Figure 2(a), for example, shows a
small edge-weighted graph and its corresponding shortest s-t-path. Removing
the edges of this path then disconnects s and t, preventing a second s-t-path
from being formed. However, it is obvious that two disjoint s-t-paths exist, as
shown in Figure 2(c). Better techniques are therefore needed.

Previously, Suurballe [9] and Bhandari [2] have proposed methods for finding
the pair of edge-disjoint s-t paths whose edge-weight sums are minimal. An
outline of Bhandari’s method is given in Figure 2. As shown, in the first step,
the shortest s-t-path is found. In the second step, the graph is then modified by
adding directions on this path so that its edges point towards s. The weights
on these edges are then negated and the shortest s-t-path in this new graph is
calculated. In the final step, the graph is reset, and the two paths are “unweaved”
to form the final pair of paths, as demonstrated in Figure 2(c). This unweaving
process involves taking the symmetric difference of the two paths, resulting in a
set of edges defining an Eulerian circuit.

Note that while Dijkstra’s algorithm is sufficient for producing the first s-
t-path in this method, it cannot be used for the second path because it is
known to be incorrect for graphs featuring negatively weighted edges. Bhan-
dari [2] proposes a modified version of Dijkstra’s algorithm for this purpose.
This Modified-Dijkstra algorithm operates using the following steps. In this



description L(v) is used the denote the length of the path between the source s
and a vertex v, and P (v) gives the vertex that precedes v in the shortest s-v-path.
The method halts as soon as the shortest s-t-path has been established.

1. For all v ∈ V , set L(v) =∞ and P (v) = null.
2. Let S = ∅ and set L(s) = 0.
3. Let u ∈ S such that L(u) is minimal among all vertices currently in S. If

u = t then exit; otherwise, remove u from S and go to Step 4.
4. For all neighbouring vertices v of u, if L(u) + w(u, v) < L(v) then: (a) set

L(v) = L(u) +w(u, v), (b) set P (v) = u, and (c) insert v into S. Now return
to Step 3.

Note that Modified-Dijkstra differs from Dijkstra’s original algorithm in
that vertices can be inserted and removed from the set S of visited vertices
multiple times; however, Segewick and Wayne [7] note that this brings run times
that are exponential in the worst case. As an alternative, Bhandari [2] also
suggests a modified version of Moores algorithm that is able to halt as soon
as the shortest s-t-path is identified. This features a more desirable complexity
of O(nm). Despite this, in our experimentation, we still found that Modified-
Dijkstra generally gave shorter run times, as shown in Section 4. It is therefore
used in all test unless specified otherwise.

Having now reviewed methods for producing s-t-circuits, our overall algo-
rithm framework Gen-k-Circuit is described as follows.

1. Let T = V −{s} be the set of target vertices to check and let C∗ = ∅ be the
best circuit observed during the run.

2. Use Dijkstra’s algorithm to determine the shortest path tree rooted at s.
This gives the shortest paths between s and all other vertices in the graph.

3. Randomly select and remove a target vertex t from T . Using the shortest
s-t-path found in Step 2, employ the methods of Bhandari together with
Modified-Dijkstra to form an s-t-circuit C.

4. If L(C) ≤ k and L(C) > L(C∗) then set C∗ = C.
5. If L(C∗) = k or T = ∅ then return C∗ and end; else go to Step 3.

As shown, the basic idea in these steps is to take each vertex t ∈ V − {s}
in turn and generate the shortest s-t-circuit. The observed circuit C∗ whose
length is closest to but not exceeding k is then returned. In the worst case,
this involves n − 1 separate iterations of the algorithm (i.e., applications of
Modified-Dijkstra). In the following sections, however we will discuss various
ways in which this number can be reduced while not affecting the accuracy of
the algorithm.

3 Problem Generation and Preprocessing

As mentioned, in this paper we want to focus on graphs resembling real-world
networks of roads and footpaths. However, to help analyse behaviour, we also
want to be able to alter their edge densities. We therefore started by looking
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Fig. 3. (a) An example of a graph with an edge connectivity of one (due to the presence
of the bridge {u, v}); (b) the modified graph, featuring an edge connectivity of two.

at the central districts of five large cities, namely Amsterdam, Kolkata, Lon-
don, Melbourne and New York. These were found to have approximately 400
nodes (intersections) per square km. We then generated our own large problem
instances that emulated these features.

To generate a single instance we started by taking a 10 km by 10 km square
and placing 400,000 nodes within it at random coordinates. A Delaunay trian-
gulation was then generated from these vertices, and a subset of this triangu-
lation’s edges was randomly selected to form a connected planar graph. Edge
weights were then set to the Euclidean distances between end points, rounded
up to the nearest metre. To allow circuits in any direction, the source vertex
was also placed at the centre of the square at coordinate (5000, 5000). For our
experiments we considered three types of graphs: sparse, medium, and dense,
featuring 500,000, 750,000 and 1000,000 edges respectively. Twenty such graphs
were generated in each case.

Before producing circuits with these graphs, two preprocessing steps are re-
quired. Firstly, observe that any vertex v whose distance is more than k/2 units
from the source can be removed from the graph since, in such cases, all s-v-
circuits will be longer than k. For small values of k this can drastically reduce
the number of edges and vertices, making computation much faster.

Our second preprocessing step is used to deal with any bridges in the graph
(recall that a bridge is any edge whose removal increases the number of graph
components). The presence of bridges in a graph can severely limit the number
of circuits that are available and can therefore affect the quality of solution –
in Figure 3(a), for example, we see that only one s-circuit is possible. To avoid
these issues, graphs containing bridges are extended so that their edge connec-
tivity is raised to two, making circuits between all pairs of vertices possible. Our
method of doing this is illustrated in Figure 3(b). First, all bridges in the graph
are identified1, and the endpoints of these edges are inserted into a set A. For
each vertex v ∈ A, a dummy vertex v′ is then added to the graph and its neigh-
bourhood is set to be equal to vertex v. The zero-weighted edge {v, v′} is then
also added.

Note that when executing our Gen-k-Circuit algorithm, a dummy vertex
v′ of a vertex v does not need to be added to the set of target vertices T . This is

1 This can be achieved in O(m) time using the algorithm of Tarjan [10].
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Fig. 5. Accuracy of our approach for differing values of k using sparse, medium, and
dense problem instances respectively. All points are averaged across twenty problem
instances.

because the generated s-v′-circuit will have the same length as the s-v-circuit. An
instance containing n′ dummy vertices therefore requires a maximum of n−n′−1
iterations in total.

The effects of these preprocessing steps are illustrated in Figure 4. In all cases,
we see that the value for k has a large effect on the total number of vertices in
the resultant graph. For the sparse graphs we also see that significant numbers
of dummy vertices need to be added to eliminate the bridges that are present.
Fewer additions are needed with denser graphs, however.

4 Basic Algorithm Performance

Our first set of results shows the accuracy of our approach for differing k values.2

Here, accuracy is reported in two ways: (a) the percentage of instances for which
L(C∗) = k was achieved (the success rate), and (b) the percentage gap between
L(C∗) and k, calculated as (1− L(C∗)/k)× 100.

These results are summarised in Figure 5. For the smallest values of k, the
gap between k and L(C∗) seems to be around one to two percent and success
rates are low. These gaps exist because the graphs are small and, as a result, very

2 All algorithms were written in C++ and executed on a 3.3 GHz CPU with 8 GB of
RAM.
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Fig. 6. Run times for different variants of Gen-k-Circuit and differing values of k
using sparse, medium, and dense problem instances respectively. All points are averaged
across twenty problem instances.

few s-circuits are generated by the algorithm, giving us fewer options to choose
between. For the same reason, larger values of k result in a much higher accu-
racy. Accuracy also improves slightly with denser instances because, as shown
in Figure 4, these tend to feature more vertices, but fewer dummy vertices. This
also gives a greater number of s-circuits to choose from.

In Figure 6 we show the run times of Gen-k-Circuit with these instances.
To reduce noise in these timings, we executed the algorithm for the maximum
number of iterations – that is, we did not halt early if a circuit of length k was
found. To contrast these results, we also include the times for two different vari-
ants. In the first of these, applications of Modified-Dijkstra were replaced by
Bhandari’s modification of Moore’s O(nm) algorithm [2]. This variant therefore
produces solutions of identical quality to the original. In the second variant, the
shortest path algorithms used in Steps 2 and 3 of Gen-k-Circuit were replaced
by the O(m) breadth first search (BFS) algorithm. This variant produces differ-
ent solutions to the others because it determines s-t-circuits with the minimum
number of edges as opposed to minimum lengths.

Figure 6 shows that the time requirements of these variants increase for
denser graphs and larger graphs, with run times reaching up to 300 seconds
in places. We see that using Moore’s algorithm gives slightly higher run times
compared to Modified-Dijkstra, while the use of BFS shortens run times
quite considerably. An issue with BFS, however, is that its preference for circuits
with minimal numbers of edges can result in solutions that, subjectively, are
sometimes less attractive to the user. An example of this is shown in Figure 7.

5 Improving Algorithm Performance

In this section we show how the performance of Gen-k-Circuit can be improved
by (a) using information collected during a run to filter out members of T that
cannot improve solution quality, and (b) strategically selecting members of T
that are more likely result in high-quality solutions being found earlier in a run.
For (a) we first give the following theorem.
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Fig. 7. Circuits produced by Modified-Dijkstra (left) and BFS (right) using a planar
graph with n = 400 and m = 800, and a desired length of k = 30000. The source
appears at the bottom-left corner.

Theorem 1. Let G = (V,E) be an edge-weighted graph with no negative weights.
In addition, let P1 be the shortest s-v-path in G, and let C be the shortest s-v-
circuit, determined using P1 together with the methods of Bhandari (Section 2).

(i) If u ∈ C, then the shortest s-u-circuit has a length of at most L(C).
(ii) If u is a descendent of v in the shortest path tree rooted at s, then the lengths

of all s-u-circuits in G equal or exceed L(C).

Proof. Part (i) is trivial: if u ∈ C then C also defines an s-u-circuit; hence an
s-u-circuit of length L(C) is known to exist.

To prove Part (ii), let P2 be the shortest v-u-path in G. The shortest s-u-
path therefore has length L(P1)+L(P2), where L(P2) is nonnegative. In addition,
using the methods of Bhandari let P ′1 and P ′2 be the second paths generated from
s to v and s to u respectively. We now need to show that L(C) = L(P1)+L(P ′1) ≤
L(P1) + L(P2) + L(P ′2) or, in other words, L(P ′1) ≤ L(P2) + L(P ′2). To do this,
assume the opposite, giving L(P ′1) > L(P2) + L(P ′2). This now implies that the
shortest s-v-circuit has length L(P1) + L(P2) + L(P ′2), which is a contradiction.

The findings of Theorem 1 allow us to filter out members of T through the
application of the following two rules, which are applied between Steps 3 and 4
of Gen-k-Circuit. Recall that at this point in the algorithm, C is the shortest
s-t-circuit in G.

1. If L(C) ≤ k, then remove all vertices u ∈ C from T . (All s-u-circuits will be
equal or inferior in quality compared to C.)

2. If L(C) ≥ k, then remove from T any descendents u of t in the shortest path
tree rooted at s. (The lengths of all s-u-circuits in G will equal or exceed
L(C).)

Instead of removing just one vertex from T in each iteration of the algorithm,
these rules therefore allow the removal of multiple vertices, thereby speeding up
the algorithm while not compromising the quality of solution produced. Note,
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Fig. 8. Run times for Gen-k-Circuit using filtering and heuristic selection. Results
are summarised for differing values of k using sparse, medium, and dense problem
instances respectively. All points are averaged across twenty problem instances.

however, that these rules rely on the use of shortest paths and circuits – they
are therefore not suitable for the BFS variant of the algorithm.

Our second strategy for improving algorithm performance is to modify Step 3
of Gen-k-Circuit so that t is chosen according to some heuristic. We suggest
three strategies here: furthest-first, where the t ∈ T furthest from the source s
is selected; closest-first, where the t ∈ T closest to s is selected; and the original
random selection.

Figure 8 shows that these augmentations significantly reduce the run times
of the algorithm. In general, the furthest-first rule seems to give the shortest run
times because, in early stages of the run, it tends to produce overly long circuits
with many vertices, allowing many elements to be removed from T according to
the first rule above. Note that the second filtering rule is never actually applied
using this heuristic because descendents of a vertex t will have already been
considered and removed from T . Perhaps because of this, the random heuristic
is often able to produce similar results in that it is able to remove elements from
T according to both filtering rules.

As with our previous experiments, note that the run times shown in Figure 8
were gained by executing Gen-k-Circuit for the maximum number of itera-
tions. That is, the algorithm did not halt early in cases where a circuit of length
k was found. Doing so, however, can drastically cut run times. In Figure 9 we
show the times at which the best observed solution was found in each run with
each instance. The best performance again comes when using the furthest-first
rule, because solutions with lengths close to k tend to be considered in early
stages of the run. On occasion, the random heuristic produces better results,
but we found its run times to be subject to a much higher variance, making its
behaviour less predictable. In contrast the closest-first heuristic is clearly the
worst because, early in the run, it tends to consider very short circuits whose
lengths are far from k. This also seems to result in fewer vertices being filtered
from T .
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Fig. 9. Time at which the best solution was observed in runs of Gen-k-Circuit using
filtering and heuristic selection. Results are summarised for differing values of k using
sparse, medium, and dense problem instances respectively. All points are averaged
across twenty problem instances.

6 Conclusions

This paper has proposed a fast-acting heuristic algorithm for the NP-hard k cir-
cuit problem. Our method is based on finding pairs of edge-disjoint shortest paths
between the source vertex s and a suitable target vertex t. The best observed
performance comes when the targets that are furthest from s are considered first,
which seems to result in higher quality solutions being identified earlier in the
run, while also allowing larger numbers of vertices to be filtered out of the set
of potential targets T .

There are a number of extensions to this problem that might be considered
in future work. These include identifying fixed-length circuits that remain within
a given distance of the starting point (encouraging routes that “stay local”), or
adding required destinations within a circuit, such as a local shop or a friend’s
house.
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