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Abstract

It is widely acknowledged that some of the most powerful algorithms for graph colouring
involve the combination of evolutionary-based methods with exploitative local search-based
techniques. This chapter conducts a review and discussion of such methods, principally fo-
cussing on the role that recombination plays in this process. In particular we observe that, while
in some cases recombination seems to be usefully combining substructures inherited from par-
ents, in other cases it is merely acting as a macro perturbation operator, helping to reinvigorate
the search from time to time.

1 Introduction
Graph colouring is a well-known NP-hard combinatorial optimisation problem that involves
using a minimal number of colours to paint all vertices in a graph such that all adjacent vertices
are allocated different colours. The problem is more formally stated as follows: Given an
undirected simple graph G = (V,E), with vertex set V and edge set E, our task is to assign
each vertex v ∈ V an integer c(v) ∈ {1, 2, . . . , k} so that:

• c(v) 6= c(u) ∀{v, u} ∈ E; and

• k is minimal.

Though essentially a theoretical problem, graph colouring is seen to underpin a wide va-
riety of seemingly unrelated operational research problems including satellite scheduling [55],
educational timetabling [10, 36], sports league scheduling [39], frequency assignment prob-
lems [2, 53], map colouring [4], airline crew scheduling [25], and compiler register alloca-
tion [12]. The design of effective algorithms for graph colouring thus has positive implications
for a large range of real-world problems.

Some common terms used with graph colouring are as follows:

• A colouring of a graph is called complete if all vertices v ∈ V are assigned a colour
c(v) ∈ {1, . . . , k}; else it is considered partial.

• A clash describes a situation where a pair of adjacent vertices u, v ∈ V are assigned the
same colour (that is, {u, v} ∈ E and c(v) = c(u)). If a colouring contains no clashes,
then it is considered proper; else it is improper.

• A colouring is feasible if and only if it is both complete and proper.

• The chromatic number of a graph G, denoted χ(G), is the minimal number of colours
required in a feasible colouring. If a feasible colouring uses χ(G) colours, it is considered
optimal.
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Figure 1: A simple graph (left) and a feasible 5-colouring (right).

• An independent set is a subset of vertices I ⊆ V that are mutually non-adjacent. That is,
∀u, v ∈ I, {u, v} /∈ E. Similarly, a clique is a subset of vertices C ⊆ V that are mutually
adjacent: ∀u, v ∈ C, {u, v} ∈ E.

Given these definitions, we might also view graph colouring as a type of partitioning/grouping
problem where the aim is to split the vertices into a set of subsets U = {U1, . . . , Uk} such
that Ui ∩ Uj = ∅ (1 ≤ i < j ≤ k). If

⋃k
i=1 Ui = V , then the partition represents a com-

plete colouring. Moreover, if all subsets U1, . . . , Uk are independent sets, the colouring is also
feasible.

To exemplify these concepts, Figure 1 shows an example graph with ten vertices, together
with a corresponding colouring. In this case the presented colouring is both complete and
proper, and therefore feasible. It is also optimal because it uses just 5 colours, which happens
to be the chromatic number in this case. The graph also contains one clique of size 5 (vertices
v1, v3, v4, v6, and v7), and numerous independent sets, such as vertices v2, v3, v8, and v9.
As a partition, this colouring is represented U = {{v1, v10}, {v7, v8}, {v3, v5}, {v2, v4, v9},
{v6}}

It should be noted that various subsidiary problems related to the graph colouring problem
are also known to be NP-hard. These include computing the chromatic number itself, iden-
tifying the size of the largest clique, and determining the size of the largest independent set
in a graph [26, 32]. In addition, the decision variant of the graph colouring problem, which
asks: “given a fixed positive integer k, is there a feasible k-colouring of the vertices?” is NP-
complete.

2 Algorithms for Graph Colouring
Graph colouring has been studied as an algorithmic problem since the late 1960’s and, as a re-
sult, an abundance of methods have been proposed. Loosely speaking, these methods might be
grouped into two main classes: constructive methods, which build solutions step-by-step, per-
haps using various heuristic and backtracking operators; and stochastic search-based methods,
which attempt to navigate their way through a space of candidate solutions while optimising a
particular objective function.

The earliest proposed algorithms for graph colouring generally belong to the class of con-
structive methods. Perhaps the simplest of these is the “first-fit” (or “greedy”) algorithm. This
operates by taking each vertex in turn in a specified order and assigning it to the lowest indexed
colour where no clash is induced, creating new colours when necessary [54]. A development on
this method is the DSATUR algorithm [8, 50] in which the ordering of the vertices is determined
dynamically – specifically by choosing at each step the uncoloured vertex that currently has the
largest number of different colours assigned to adjacent vertices, breaking ties by taking the
vertex with the largest degree. Other constructive methods have included backtracking strate-
gies, such as those of Brown [9] and Korman [33], which may ultimately perform complete
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enumerations of the solution space given excess time. A survey of backtracking approaches
was presented by Kubale and Jackowski [34] in 1985.

Many of the more recent methods for graph colouring have followed the second approach
mentioned above, which is to search a space of candidate solutions and attempt to identify
members that optimise a specific objective function. Such methods can be further classified
according to the composition of their search spaces, which can comprise: (a) the set of all
feasible solutions (using an undefined number of colours); (b) the set of complete colourings
(proper and improper) for a fixed number of colours k; or (c) the set of proper solutions (partial
and complete), also for a fixed number of colours k.

Algorithms following scheme (a) have been considered by, among others, Culberson and
Luo [16], Mumford [44], Erben [19], and Lewis [37]. Typically, these methods consider differ-
ent permutations of the vertices, which are then fed into a constructive method (such as first-fit)
to form feasible solutions. An intuitive cost function in such cases is simply the number of
colours used in a solution, though other more fine-grained functions have been suggested, such
as the following due to Erben [19]:

f1 =

∑
Ui∈U

(∑
v∈Ui

deg(v)
)2

|U|
. (1)

Here, the term
(∑

v∈Ui
deg(v)

)
gives the sum of the degrees of all vertices assigned to a colour

class Ui. The aim is to maximise f1 by making increases to the numerator (by forming large
colour classes that contain high-degree vertices), and decreases to the denominator (by reducing
the number of colour classes).

On the other hand, algorithms following scheme (b) operate by first proposing a fixed num-
ber of colours k. At the start of a run, each vertex will be assigned to one of the k colours using
heuristics, or randomly. However, this may involve the introduction of one or more clashes, re-
sulting in a complete, improper k-colouring. The cost of such a solution might then be evaluated
using the following cost function, which is simply a count on the number of clashes:

f2 =
∑

∀{v,u}∈E

g(v, u) where g(v, u) =

{
1 if c(v) = c(u)
0 otherwise. (2)

The strategy in such approaches is to make alterations to a solution such that the number of
clashes is reduced to zero. If this is achieved k can be reduced; alternatively if all clashes cannot
be eliminated, k can be increased. This strategy has been quite popular in the literature, involv-
ing the use of various stochastic search methodologies including simulated annealing [13, 31],
tabu search [28], GRASP methods [35], iterated local search [14, 46], variable neighbourhood
search [5], ant colony optimisation [51], and evolutionary algorithms (EAs) [17, 18, 22, 23, 41,
47].

Finally, scheme (c) also involves using a fixed number of colours k; however in this case,
rather than allowing clashes to occur in a solution, vertices that cannot be feasibly assigned to
a colour are placed into a set of uncoloured vertices S. The aim is to therefore make changes
to a solution so that these vertices can eventually be feasibly coloured, resulting in S = ∅.
This approach has generally been less popular in the literature than scheme (b), though some
prominent examples include the simulated annealing approach of Morgenstern [43], the tabu
search method of Blochliger and Zufferey [7], and the EA of Malaguti et al. [42]. More recently,
Hertz et al. [29] have also suggested an algorithm that searches different solution spaces during
different stages of a run. The idea is that when the search is deemed to have stagnated in one
space, a procedure is used to alter the current solution so that it becomes a member of another
space (e.g. clashing vertices are “uncoloured” by transferring them to S). Once this has been
done, the search can then be continued in this new space where further improvements might be
made.
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2.1 EAs for Graph Colouring
In this section we now examine the ways in which EAs have been applied to the graph colouring
problem, particularly looking at issues surrounding the recombination of solutions.

2.1.1 Assignment-Based Operators

Perhaps the most intuitive way of applying EAs to the graph colouring problem is to view the
task as one of assignment. In this case, a candidate solution can be viewed as a mapping of
vertices to colours c : V → {1, . . . , k}, and a natural chromosome representation is a vector
(c(v1), c(v2), . . . , c(v|V |)), where c(vi) gives the colour of vertex vi (the solution given in Fig-
ure 1 would be represented (1, 4, 3, 4, 3, 5, 2, 2, 4, 1) under this scheme). However, it has long
been argued that this sort of approach brings disadvantages, not least because it contradicts
a fundamental design principle of EAs: The Principle of Minimum Redundancy [48], which
states that each member of the search space should be represented by as few distinct chromo-
somes as possible. To expand upon this point, we observe that under this “assignment-based”
representation, if we are given a solution using l ≤ k colours, the number of different chro-
mosomes representing this solution will be kPl due to the arbitrary way in which colours are
allocated labels. (For example, swapping the labels of colours 2 and 4 in Figure 1’s solution
would give a new chromosome (1,2,3,2,3,5,4,4,2,1), but the same solution.) Of course, this
implies a search space that is far larger than necessary.

Furthermore, authors such as Falkenauer [21] and Coll [15] have also argued that traditional
recombination schemes such as 1, 2, and n-point crossover with this representation have a ten-
dency to recklessly break up building-blocks that we might want promoted in a population. As
an example, consider a recombination of the two example chromosomes given in the previous
paragraph using 2-point crossover: (1,4,3,4,3,5,2,2,4,1) crossed with (1,2,3,2,3,5,4,4,2,1) would
give (1,4,3,4,3,5,4,4,4,1) as one of the offspring. Here, despite the fact that the two parent chro-
mosomes actually represent the same feasible solution, the resultant offspring seems to have
little in common with its parents, having lost one of its colours, and seen a number of clashes
being introduced. Thus, it is concluded by these authors that such operations actually constitute
more of a random perturbation operator, rather than a mechanism for combining meaningful
substructures from existing solutions. Nevertheless, recent algorithms following this scheme
are still reported in the literature [3].

In recognition of the proposed disadvantages of the assignment-based representation, Coll et
al. [15] have proposed a procedure for relabelling the colours of one of the parent chromosomes
before applying crossover. Consider two (not necessarily feasible) parent solutions represented
as partitions: U1 = {U1,1, . . . ,
U1,k}, and U2 = {U2,1, . . . , U2,k}. Now, using U1 and U2, a complete bipartite graph Kk,k

is formed. This bipartite graph has k vertices in each partition, and the weights between two
vertices i, j from different partitions is defined as wi,j = |U1,i∩U2,j |. GivenKk,k, a maximum
weighted matching can then be determined using any suitable algorithm (e.g. the Hungarian al-
gorithm [45] or Auction algorithm [6]), and this matching can be used to re-label the colours in
one of the chromosomes.

Figure 2 gives an example of this procedure and shows how the second parent can be altered
so that its colour labellings maximally match those of parent 1. In this case, we note that the
colour classes {v1, v10}, {v3, v5}, and {v6} occur in both parents and will be preserved in any
offspring produced via a traditional crossover operator. However, this will not always be the
case and will depend very much on the best matching that is available in each case.

A further scheme for colour relabelling that also addresses the issue of redundancy has
been proposed by Tucker et. al [52]. This method involves representing solutions using the
assignment-based scheme, but under the following restriction.

c(v1) = 1 (3)
c(vi+1) ≤ max{c(v1), . . . , c(vi)}+ 1. (4)
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 1 2 3 4 5 

1  0 0 2 0 0 

2 0 0 0 2 0 

3 2 0 0 0 0 

4 0 2 0 1 0 

5 0 0 0 0 1 

Parent 1 

(1, 4, 3, 4, 3, 5, 2, 2, 4, 1) 
 

Partition 

U1,1 = {v1, v10} 

U1,2 = {v7, v8} 

U1,3 = {v3, v5} 

U1,4 = {v2, v4, v9} 

U1,5 = {v6} 

Parent 2 

(3, 2, 1, 2, 1, 5, 4, 4, 4, 3) 
 

Partition 

U2,1 = {v3, v5} 

U2,2 = {v2, v4} 

U2,3 = {v1, v10} 

U2,4 = {v7, v8, v9} 

U2,5 = {v6} 

|U1, i U2, j | 

Parent 2 relabelled 

(1, 4, 3, 4, 3, 5, 2, 2, 2, 1) 

Figure 2: Example of the relabelling procedure proposed by Coll et al. [15]. Here, parent 2 is
relabelled as 1→ 3, 2→ 4, 3→ 1, 4→ 2, and 5→ 5

Chromosomes obeying these labelling criteria might therefore be considered as being in their
canonical form such that, by definition, vertex v1 is always coloured with colour 1, v2 is always
coloured with colour 1 or 2, and so on. (The solution given in Figure 1 would be represented
by (1,2,3,2,3,4,5,5,2,1) under this scheme.) However, although this ensures a one-to-one corre-
spondence between the set of chromosomes and the set of vertex partitions (thereby removing
any redundancy), research by Lewis and Pullin [38] has demonstrated that this scheme is not
particularly useful for graph colouring, not least because minor changes to a chromosome (such
as the recolouring a single vertex) can lead to major changes to the way colours are labelled,
making the propagation of useful solution substructures more difficult to achieve when applying
traditional crossover operators.

2.1.2 Partition-Based Operators

Given the proposed issues with the assignment-based approach, the last fifteen years-or-so have
also seen a number of articles presenting recombination operators focussed on the partition
(or grouping) interpretation of graph colouring. The philosophy behind this approach is that
it is actually the colour classes (and the vertices that are assigned to them) that represent the
underlying building blocks of the graph colouring problem. In other words, it is not the colour
of individual vertices per se, but the way in which vertices are grouped that form the meaningful
substructures. Consequently, the focus should be on the design of operators that are successfully
able to combine and promote these within a population.

Perhaps the first major work in this area was due to Falkenauer [20] in 1994 (and later [21])
who argued in favour of the partition interpretation in the justification of his grouping genetic al-
gorithm (GGA) – an EA methodology specifically designed for use with partitioning problems.
Falkenauer applied this GGA to two important operational research problems: the bin-packing
problem and bin-balancing problem, with strong results being reported. In subsequent work,
Erben [19] also tailored the GGA for graph colouring. Erben’s approach operates in the space
of feasible colourings and allows the number of colours in a solution to vary. Solutions are then
stored as partitions, and evaluated using Eq. (1). In this approach, recombination operates by
taking two parent solutions and randomly selecting a subset of colour classes from the second.
These colour classes are then copied into the first parent, and all colour classes coming from
the first parent containing duplicate vertices are deleted. This operation results in an offspring
solution that is proper, but most likely partial. Thus uncoloured vertices are then reinserted into
the solution, in this case using the first-fit algorithm. A number of other recombination opera-
tors for use in the space of feasible solutions have also been suggested by Mumford [44]. These
operate on permutations of vertices, which are again decoded into solutions using the first-fit
algorithm.

Another recombination operator that focusses on the partition interpretation of graph colour-
ing is due to Galinier and Hao who in 1999 proposed an EA that, at the date of writing, is still
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Parent 1 Parent 2 Offspring
a) U1= {v1, v2, v3} {v3, v4, v5, v7} {} Select the colour with most vertices and

U2= {v4, v5, v6, v7} {v1, v6, v9} {} copy to the child (U2 from parent 1 here).
U3= {v8, v9, v10} {v2, v8, v10} {} Delete copied vertices from both parents.

b) U1= {v1, v2, v3} {v3} {v4, v5, v6, v7} Select the colour with most vertices in
U2= {} {v1, v9} {} parent 2 and copy to child.
U3= {v8, v9, v10} {v2, v8, v10} {} Delete copied vertices from both parents.

c) U1= {v1, v3} {v3} {v4, v5, v6, v7} Select the colour with most vertices in
U2= {} {v1, v9} {v2, v8, v10} parent 1 and copy to the child.
U3= {v9} {} {} Delete copied vertices from both parents.

d) U1= {} {} {v4, v5, v6, v7} Having formed k colours, assign any
U2= {} {v9} {v2, v8, v10} missing vertices to random colours.
U3= {v9} {} {v1, v3}

e) U1= {} {v9} {v4, v5, v6, v7} A complete (though not necessarily
U2= {v9} {} {v2, v8, v10, v9} proper) solution results.
U3= {} {} {v1, v3}

Figure 3: Demonstration of the Greedy Partition Crossover (GPX) operator using k = 3.

understood to be one of the best performing algorithms for graph colouring [23, 27, 42, 40].
Using a fixed number of colours k, Galinier and Hao’s method operates in the space of com-
plete (proper and improper) k-colourings using cost function f2 (Eq. (2)). A population of
candidate solutions is then evolved using local search (based on tabu search) together with a
specialised recombination operator called Greedy Partition Crossover (GPX). The latter is used
as a global operator and is intended to guide the search over the long term, gently directing it
towards favourable regions of the search space (exploration), while the local search element is
used to identify high quality solutions within these regions (exploitation).

The idea behind GPX is to construct offspring using large colour classes inherited from
the parent solutions. A demonstration of how this is done is given in Figure 3. As is shown,
the largest (not necessarily proper) colour class in the parents is first selected and copied into
the offspring. Then, in order to avoid duplicate vertices occurring in the offspring at a later
stage, these copied vertices are removed from both parents. To form the next colour, the other
(modified) parent is then considered and, again, the largest colour class is selected and copied
into the offspring, before again removing these vertices from both parents. This process is
continued by alternating between the parents until the offspring’s k colour classes have been
formed. At this point, each colour class in the offspring will be a subset of a colour class
existing in one or both of the parents. That is:

∀Ui ∈ Uc ∃Uj ∈ (U1 ∪ U2) : Ui ⊆ Uj (5)

where Uc, U1, and U2 represent the offspring, and parents 1 and 2 respectively.
One feature of the GPX operator is that on production of an offspring’s k colour classes,

some vertices may be missing (this occurs with vertex v9 in Figure 3). Galinier and Hao suggest
assigning these uncoloured vertices to random classes, which of course could introduce further
clashes. This element of the procedure might therefore be viewed as a type of perturbation
(mutation) operator in which the number of random assignments (the size of the perturbation) is
determined by the construction stages of GPX. However, Glass and Prügel-Bennet [27] observe
that GPX’s strategy of inheriting the largest available colour class at each step (as opposed to a
random colour class) generally reduces the number of uncoloured vertices. This means that the
amount of information inherited directly from the parents is increased, reducing the potential
for disruption. Once a complete offspring is formed, it is then modified and improved via a
local search procedure before being inserted into the population.

Since the proposal of GPX by Galinier and Hao [23], further recombination schemes based
on this method have also been suggested, differing primarily on the criteria used for selecting the
colour classes that are inherited by the offspring. Lü and Hao [41], for example, have extended
the GPX operator to allow more than two parents to play a part in producing a single offspring
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(see Section 5). On the other hand, Porumbel et al. [47] suggest that instead of choosing the
largest available colour class at each stage of construction, classes with the least number of
clashes should be prioritised, with class size (and information regarding the degrees of the
vertices) then being used to break ties. Malaguti et al. [42] also use a modified version of GPX
with an EA that navigates the space of partial, proper solutions. In all of these cases the authors
have combined their recombination operators with a local search procedure in the same manner
as Galinier and Hao [23] and, with the problem instances considered, the reported results are
generally claimed to be competitive with the state of the art.

2.1.3 Assessing the Effectiveness of EAs for Graph Colouring

In recent work carried out by the author of this chapter [40], a comparison of six different graph
colouring algorithms was presented. This study was quite broad and used over 5000 different
problem instances. Its conclusions were also rather complex, with each method outperform-
ing all others on at least one class of problem. However, a salient observation was that the
GPX-based EA of Galinier and Hao [23] was by far the most consistent and high-performing
algorithm across the comparison.

In the remainder of this chapter we pursue this matter further, particularly focussing on
the role that GPX plays in this performance. Under a common EA framework, described in
Section 3, we first evaluate the performance of GPX by comparing it to two other recombination
operators (Section 4). Using information gained from these experiments, Section 5 then looks
at how the performance of the GPX-based EA might be enhanced, particularly by looking at
ways in which population diversity might be prolonged during a run. Finally, conclusions
and a further discussion surrounding the virtues of recombination in this problem domain are
presented in Section 6.

3 Setup
The EA used in the following experiments operates in the same manner as Galinier and Hao’s [23].
To form an initial population, a modified version of the DSATUR algorithm is used. Specifically,
each individual is formed by taking the vertices in turn according to the DSATUR heuristic and
then assigning it to the lowest indexed colour i ∈ {1, . . . , k} where no clash occurs. Vertices
for which no clash-free colour exists are assigned to random colours at the end of this process.
Ties in the DSATUR heuristic are broken randomly, providing diversity in the initial population.
Each individual is then improved by the local search routine.

The EA evolves the population using recombination, local search, and replacement pressure.
In each iteration two parent solutions are selected at random, and the selected recombination
operator is used to produce one offspring. This offspring is then improved via local search and
inserted into the population by replacing the weaker of its two parents.

The local search element of this EA makes use of tabu search – specifically the TABUCOL
algorithm of Hertz and de Werra [28], run for a fixed number of iterations. In this method,
moves in the search space are achieved by selecting a vertex v whose assignment to colour i
is currently causing a clash, and moving it to a new colour j 6= i. The inverse of this move is
then marked as tabu for the next t steps of the algorithm (meaning that v cannot be re-assigned
to colour i until at least t further moves have been performed). In each iteration, the complete
neighbourhood is considered, and the non-tabu move that is seen to invoke the largest decrease
in cost (or failing that, the smallest increase) is performed. Ties are broken randomly, and tabu
moves are also carried out if they are seen to improve on the best solution observed so far in the
process. The tabu search routine terminates when the iteration limit is reached (at which case
the best solution found during the process is taken), or when a zero cost solution is achieved.
Further descriptions of this method, including implementation details, can be found in [24].

In terms of parameter settings, in all cases we use a population size of 20 (as in e.g. [41, 47]),
and set the tabu search iteration limit to 16|V |, which approximates the settings used in the best
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reported runs in [23]. As with other algorithms that use this local search technique [7, 23, 51],
the tabu tenure t is made proportional to the current solution cost: specifically, t = d0.6f2e+ r,
where r is an integer uniformly selected from the range 0 to 9 inclusive.

Finally, because this algorithm operates in the space of complete k-colourings (proper and
improper), values for k must be specified. In our case initial values are determined by executing
DSATUR on each instance and setting k to the number of colours used in the resultant solution.
During runs, k is then decremented by 1 as soon as a feasible k-colouring is found, and the
algorithm is restarted. Computational effort is measured by counting the number of constraint
checks carried out by the algorithm, which occur when the algorithm requests information
about a problem instance, including checking whether two vertices are adjacent (by accessing
an adjacency list or matrix), and referencing the degree of a vertex. In all trials a cut-off point
of 5× 1011 checks is imposed, which is roughly double the length of the longest run performed
in [23]. In our case this led to run times of ≈1hr on our machines (algorithms were coded in
C++ and executed on a PC under Windows XP using a 3.0 GHz processor with 3.18 GB of
RAM).

3.1 Problem Instances
For our trials a set of five problem instances is considered. Though this set is quite small, its
members should be considered as case studies that have been deliberately chosen to cover a
wide range of graph structure – a factor that we have found to be very important in influencing
the relative performance of graph colouring algorithms [40]. The first three graphs are generated
using the publicly available software of Culberson [1], while the remaining two are taken from
a collection of real-world timetabling problems compiled by Carter et al. [11]. Names and
descriptions of these graphs now follow. Further details are also given in Table 1.

#1: Random. This graph features |V | = 1000 and is generated such that each of the
(|V |

2

)
pairs of vertices is linked by an edge with probability 0.5. Graphs of this nature are
nearly always considered in comparisons of colouring algorithms.

#2: Flat(10). Flat graphs are generated by partitioning the vertices into K equi-sized groups,
and then adding edges between vertices in different groups with probability p. This is
done such that the variance in vertex degrees is kept to a minimum. It is well known
that feasible K-coloured solutions to such graphs are generally easy to achieve except
in cases where p is within a specific range of values, which results in problems that are
notoriously difficult. Such ranges are commonly termed “phase transition regions” [30].
This particular instance is generated so that it features a relatively small number of large
colour classes (using V = 500 and K = 10, implying ≈50 vertices per colour). A value
of p = 0.115 is used, which has been observed to provide very difficult instances for a
range of different graph colouring algorithms [40].

#3 Flat(100). This graph is generated in the same manner as the previous, using |V | = 500,
K = 100, and p = 0.85. Solutions thus feature a relatively large number of small colour
classes (≈5 vertices per colour).

#4: TT(A). This graph is named “car s 91” in the original dataset of Carter et al. [11]. It is
chosen because it is quite large and, unlike the previous three graphs, the variance in
vertex degrees is quite high. This problem’s structure is also much less regular than the
previous three graphs, which are generated in a fairly regimented manner.

#5: TT(B). This graph, originally named “pur s 93”, is the largest problem in Carter’s dataset,
with |V | = 2419. It is also quite sparse compared to the previous graph, though it still
features a high variance in vertex degrees (see Table 1).

The rightmost column of Table 1 also gives information on the best solutions known for each
graph. These values were determined via extended runs of our algorithms, or due to information
provided by the problem generator.
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Vertex degree Best Known
#: Name |V | Density Min; Med; Max Mean SD (colours)
1: Random 1000 0.499 450; 499; 555 499.4 16.1 83
2: Flat(10) 500 0.103 36; 52; 61 51.7 4.4 10
3: Flat(100) 500 0.841 393; 421; 445 420.7 7.6 100
4: TT(A) 682 0.128 0; 77; 472 87.4 62.0 27
5: TT(B) 2419 0.029 0; 47; 857 71.3 92.3 32

Table 1: Details of the five problem instances used in our analysis.

Parent 1 

U1 = {v1, v10} 

U2 = {v7, v8} 

U3 = {v3, v5} 

U4 = {v2, v4, v9} 

U5 = {v6} 

Parent 2 

U1 = {v1, v9} 

U2 = {v7} 

U3 = {v3, v5} 

U4 = {v2, v4, v8} 

U5 = {v6, v10} 

Offspring 

U1 = {v1, v10} 

U2 = {v7, v8} 

U3 = {v3, v5} 

U4 = {v2, v4, v8} 

U5 = {v6} Uncoloured = {v9} 

Figure 4: Demonstration of the GGA recombination operator. Here, colour classes in parent 2 are
labelled to maximally match those of parent 1.

4 Experiment 1
Our first set of experiments looks at the performance of GPX by comparing it to two additional
recombination operators. To gauge the advantages of using a global operator (recombination in
this case), we also consider the performance of TABUCOL on its own, which iterates on a single
solution until the run cut-off point is met.

Our first additional recombination operator follows the assignment-based scheme discussed
in Section 2.1.1 and, in each application, utilises the procedure of Coll et al. [15] (Figure 2) to
relabel the second parent. Offspring are then formed using the classical n-point crossover, with
each gene being inherited from either parent with probability 0.5.

Our second recombination operator is based on the grouping genetic algorithm (GGA)
methodology (Section 2.1.2), adapted for use in the space of k-colourings. An example is
given in Figure 4. Given two parents, the colour classes in the second parent are first relabelled
using Coll et al.’s procedure. Using the partition-based representations of these solutions, a sub-
set of colours in parent 2 is then chosen randomly, and these replace the corresponding colours
in a copy of parent 1. Duplicate vertices are then removed from colour classes originating from
parent 1 and uncoloured vertices are assigned to random colour classes. Note that like GPX,
before uncoloured vertices are assigned, the property defined by Eq. 5 is satisfied by this oper-
ator; however, unlike GPX there is no requirement to inherit larger colour classes, or to inherit
half of its colour classes from each parent.

A summary of the results achieved by the three recombination operators (together with
TABUCOL) is given in Table 2. For each instance the same set of 20 initial populations was
used with the EAs, and entries in bold signify samples that are significantly different to the
non-bold EA entries according to a Wilcoxon signed-rank test at the 0.01 significance level.
For graph #1 we see that GPX has clearly produced the best results – indeed, even its worst
result features two fewer colours than the next best solution. However, for graphs #2 and #5,
no significant difference between the EAs is observed, while for #3 and #4, better results are
produced by the GGA and the n-point crossover.

Figure 5 shows run profiles for two example graphs. We see that in both cases TABUCOL
provides the fastest rates of improvement, though it is eventually overtaken by at least one of
the EAs. Table 2, however, also reveals that TABUCOL performs very poorly with graphs #4
and #5. This seems due to the high degree variance in these cases, which we observe makes
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GPX n-point GGA TABUCOL

#1 87.00 (87;87;87) 93.35 (93;93;94) 91.55 (91;92;92) 89.10 (89;89;90)
#2 12.95 (12;13;13) 13.00 (13;13;13) 13.00 (13;13;13) 13.00 (13;13;13)
#3 105.60 (105;106;106) 105.05 (105;105;106) 105.05 (105;105;106) 105.90 (105;106;106)
#4 29.05 (28;29;30) 28.00 (28;28;28) 27.90 (27;28;29) 38.20 (32;37.5;46)
#5 33.30 (33;33;34) 33.15 (32;33;34) 33.10 (32;33;34) 52.05 (47;52;56)

Table 2: Number of colours in the best feasible solution achieved at the cut-off point (mean (min;
median; max) of 20 runs).
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Figure 5: Run profiles for the Random (#1, left) and Flat(100) (#3, right) instances. (Mean of 20
runs).

the cost of neighbouring solutions in the search space vary more widely. This suggests a more
“spiky” cost landscape in which the use of local search in isolation exhibits a susceptibility for
becoming trapped at local optima (see also [40]).

An important factor behind the differing performances of these EAs is the effect that recom-
bination has on the population diversity. To examine this, we first define a metric for measuring
the distance between two solutions: Given a solution U , let PU = {{u, v} : c(u) = c(v)}, for
∀u, v ∈ V , u 6= v. The distance between two solutions U1 and U2 can then be defined:

D(U1,U2) =
|PU1

∪ PU2
| − |PU1

∩ PU2
|

|PU1
∪ PU2

|
. (6)

This measure gives the proportion of vertex pairings (assigned to the same colour) that exist
in just one of the two solutions. Consequently, if U1 and U2 are identical, then PU1

∪ PU2
=

PU1 ∩ PU2 , giving D(U1,U2) = 0. Conversely, if no vertex pair is assigned the same colour,
PU1 ∩ PU2 = ∅, implying D(U1,U2) = 1. Population diversity can also be defined as the mean
distance between each pair of solutions in the population. That is, given a set of m individuals
U = {U1,U2, . . . ,Um},

Diversity(U) =
1(
m
2

) ∑
∀Ui,Uj∈U:i<j

D(Ui,Uj). (7)

Considering our results, the two scatter plots of Figure 6 demonstrate the positive correla-
tion that exists between parental distance and the number of uncoloured vertices that result in
applications of the GPX and GGA operators. This data was derived from graph #4, though sim-
ilar patterns were observed for the other instances. Note that the correlation is weaker for GGA
due to two reasons. First, unlike GPX which requires half of the colour classes to be inherited
from each parent, with GGA this proportion can vary. Thus if the majority of colour classes
are inherited from just one parent, it is possible to have two very different parents, but only
a small number of uncoloured vertices. Second, as mentioned earlier GGA shows no bias to-
wards inheriting larger colour classes, meaning that the number of uncoloured vertices can also
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Figure 6: Relationship between parental distance and number of uncoloured vertices with the GPX
(top-left) and GGA (top-right) operators. Also shown is the number of uncoloured vertices in the
first 10,000 applications of GPX (bottom-left) and GGA (bottom-right).

be higher than GPX, particularly when inheriting around half of the colour classes from each
parent. An effect of these patterns is shown in the lower graphs of Figure 6, where throughout
the evolutionary process, the number of uncoloured vertices occurring during recombination is
fewer and less varied with GPX. In comparison to GGA, this behaviour leads to a more rapid
loss of diversity, as is demonstrated in Figure 7 for two example graphs.

Whether sustained diversity is a help or hindrance with these EAs thus seems to depend on
the type of graph being tackled. As seen in Figure 7, for graph #1 GPX is the only recombi-
nation operator that leads to any sort of population convergence, and it is also the algorithm
that produces the best solutions given sufficient time, suggesting that is suitably “homing in” on
high-quality regions of the search space. On the other hand, for graphs #3 and #4, GGA’s more
sustained diversity (caused and perpetuated by the greater number of uncoloured vertices that
occur during recombination) causes the operator to be more disruptive. However, in these cases
this factor also seems to provide a useful diversification mechanism, allowing the algorithm to
sample wider areas of the search space, leading to better results. An extreme case of diversity
loss occurs with graph #5, which we recall has a low density and high degree variance. In
this case, when using GPX large colour classes of low-degree vertices that are formed in early
stages of the algorithm quickly come to dominate the population limiting the exploration that
then takes place – indeed, in many runs the algorithm was actually unable to improve on costs
achieved in the initial population.

Figure 7 also shows that n-point crossover tends to maintain diversity for longer periods
than GPX in this case, allowing it to produce superior results for graphs #3 and #4. However,
the sustained diversity is not due to uncoloured vertices (which do not occur with this operator);
rather, it seems due to the naturally occurring disruption that results from the colour labelling
issues mentioned in Section 2.1.1.

Finally, we also mention that during our runs with these EA’s, the local search element was
observed to be by far the most expensive part of the algorithm, with none of the recombination
operators consuming more than 1.8% of the available run time.
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Figure 7: Population diversity during the first 10,000 recombinations with the Random (#1, left)
and TT(A) (#4, right) instances.

5 Experiment 2
In this section we now consider ways in which the results of the GPX operator might be im-
proved, particularly looking at how we might encourage diversity to be sustained in the popu-
lation.

As mentioned in Section 2.1.2, Lü and Hao [41] have previously proposed extending the
GPX operator to allow offspring to be produced usingm ≥ 2 parents. In this operator, which we
call MULTIX, offspring are constructed in the same manner as GPX, except that at each stage
the largest colour class from multiple parents is chosen to be copied into the offspring. The
intention behind this increased choice is that larger colour classes will be identified, resulting in
fewer uncoloured vertices once the k colour classes have been constructed. In order to prohibit
too many colours being inherited from one particular parent, Lü and Hao also make use of a
parameter q, specifying that if the ith colour class in an offspring is copied from a particular
parent, then this parent should not be considered for a further q colours. In our application of
MULTIX we follow the recommendations of the Lü and Hao, choosing m randomly from the
set {2, . . . , 6} in each application, and using q = bm/2c. Note also that GPX is simply an
application of MULTIX using m = 2 and q = 1.

Though having the potential to produce good results [41], an issue with MULTIX is that it
could result in diversity being lost even more rapidly than GPX, particularly if fewer vertices
need to be randomly recoloured at the end of each application. In [41], Lü and Hao attempt
to deal with this using a mechanism whereby offspring are only inserted into the population if
they are seen to be sufficiently different or better than existing members. However, in our case
we suggest two alternative methods.

The first of these involves altering the MULTIX operator so that it works exclusively with
proper colourings. As noted, GPX and MULTIX currently operate on colourings in which
clashes are permitted; however, this could in theory result in large colour classes that feature
many clashes being unduly promoted in the population, when perhaps the real emphasis should
be on the promotion of large colour classes that are independent sets. The ISETS approach thus
operates by first iteratively removing clashing vertices from each parent (in a random order, until
proper colourings are achieved), and then using the MULTIX operator to produce an offspring
as before. This implies that, before recolouring missing vertices, offspring will also be proper,
since subsets of independent sets are themselves independent sets. A further effect is that a
greater number of vertices might need to be recoloured, since vertices originally removed from
the parents could also be missing in the resultant offspring.

Our second proposal for prolonging diversity is to make changes directly to an offspring to
try to increase its distance from its parents before reinsertion into the population. One way of
doing this would be to increase the iteration limit of the local search procedure, as demonstrated
by Galinier and Hao [23]. However, we find that such an approach can slow the algorithm
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Figure 8: Example Kempe chain involving e.g. vertex v7 and colour 4 (left), and the resultant
colouring due to a colour interchange (right).

GPX MULTIX ISETS KEMPE

#1 87.00 (87;87;87) 85.00 (85;85;85) 85.05 (85;85;86) 85.15 (85;85;86)
#2 12.95 (12;13;13) 13.00 (13;13;13) 13.00 (13;13;13) 12.90 (12;13;13)
#3 105.60 (105;106;106) 105.55 (105;106;106) 105.85 (105;106;106) 105.30 (105;105;106)
#4 29.05 (28;29;30) 29.10 (29;29;30) 29.00 (28;29;30) 28.00 (28;28;28)
#5 33.30 (33;33;34) 33.30 (33;33;34) 33.30 (33;33;34) 33.30 (33;33;34)

Table 3: Number of colours in the best feasible colouring achieved at the cut-off point (Mean (min;
median; max) from 20 runs.)

unnecessarily, particularly because as the procedure progresses, movements in the search space
(due to improving or sideways moves) become less frequent. An alternative in this case is to
exploit the structure of the graph colouring problem via the use of a Kempe-chain interchange
operator. Kempe-chains define connected sub-graphs that involve exactly two colours, and can
be generated by taking an arbitrary vertex v and colour i, such that c(v) 6= i. An example is
given in Figure 8. Note that when interchanging the colours of vertices in a Kempe-chain, if
the original colouring is proper, then so is the new colouring. Thus we have the opportunity to
quickly alter colourings without compromising their quality.

Our KEMPE approach operates in the same manner as ISETS, except that before reassigning
uncoloured vertices, a series of randomly selected Kempe-chain interchanges are performed on
the existing proper colouring. In our case 2k such moves are applied.

The results achieved by our three modifications are summarised in Table 3, where bold
entries signify samples that are significantly different to GPX at significance level 0.01. We see
that improvements over GPX have only been obtained on graph #1, where all three variants are
successful, and graph #4 using the KEMPE variant. In practice, we found that MULTIX causes
diversity to be lost more quickly than GPX with these graphs – however, the ISETS mechanism
did not seem to alter this behaviour a great deal, usually because the number of clashing vertices
needing to be removed was quite small (less than 10).

Surprisingly, we also found that the KEMPE variant was only able to maintain higher levels
of diversity with instances #4 and #5. For graphs #1, #2, and #3, it turns out that when using a
suitably low number of colours k, the bipartite graphs induced by most pairs of colour classes
in a solution are connected. In these cases, all of the vertices belonging to the two colour classes
are included in the Kempe-chain, meaning that a colour interchange does not alter the structure
of the solution, but merely produces a relabelling of the two colour classes. (An example of
such a Kempe-chain would occur in Figure 8 using vertex v3 and colour 2.) This is not the case
for the less-structured graphs #4 and #5, where we found that diversity could be maintained for
longer periods. However this only led to significant improvements in the results for graph #4,
whose run profiles are shown in Figure 9. Also note that these enhanced results still fail to beat
those of the GGA and n-point operators, as shown in Table 2.
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Figure 9: Run profile for TT(A) (graph #4, left), and its diversity over the first 10,000 recombina-
tions.

EA Random
k Type Cost Feas. Cost Feas.

#1 85 MULTIX 0.00 (0;0;0) 1.00 16.80 (4;17.5;31) 0.00
#2 12 GPX 2.40 (0;2;4) 0.05 7.60 (5;8;10) 0.00
#3 105 GPX 0.90 (0;1;2) 0.40 1.75 (0;2;3) 0.15
#4 27 GGA 1.10 (0;1;2) 0.15 1.35 (0;1;2) 0.05
#5 32 GGA 1.75 (0;2;3) 0.05 1.50 (0;1.5;3) 0.15

Table 4: Comparison of the best EA and corresponding random perturbation operator. (Cost of
best solutions using f2 (Eq. (2)); (mean, (min; median; max) from 20 runs), and proportion of runs
where f2 = 0 (feasibility) was achieved).

6 Conclusions and Discussion
In this chapter we have examined the relative performance of a number of different graph
colouring recombination operators. Using a common evolutionary framework, we have seen
that this performance varies, particularly due to the underlying structures of the graphs being
tackled.

A desirable property of recombination is that it should be able to combine meaningful sub-
structures of existing candidate solutions (parents) in the production of new, hopefully fitter,
offspring. But is that process actually occurring with any of these operators? Or, by involving
the random reassignment of some vertices, are the operators simply providing a mechanism by
which large random perturbations are periodically applied to a solution, helping to re-invigorate
the search process?

Again, the answer to such a question seems to depend on the problem instance at hand. In
Table 4 we compare the costs of solutions achieved by the best available recombination oper-
ator for each instance, together with those produced by a corresponding random perturbation
operator. Specifically, for each graph we identified the best run from the EA’s sample of 20
and recorded the number of uncoloured vertices that resulted in each application of recombi-
nation. We then used these figures, together with the same k-value, to specify the number of
vertices that would be randomly selected and reassigned in each corresponding application of
our random perturbation operator. In each iteration this algorithm then operated by selecting
two parents, making a copy of parent 1, randomly perturbing this copy, applying local search,
and finally replacing the weaker of the two parents.

The results in Table 4 indicate that, for graph #1, recombination is clearly doing more
than just randomly perturbing solutions since all runs have resulted in feasible 85-colourings.
However, although recombination has achieved significantly lower costs with graph #2, the
proportion of runs where feasibility has been achieved shows no significant difference for any
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of the graphs #2 to #5 (according to McNemar’s test at significance level 0.01). We find this
observation compelling as it might suggest that better results might ultimately be achieved using
schemes that make more informed decisions about the size and frequency of perturbations.
Indeed, currently the size of random perturbations tends to fall as the run progresses (Figure 6);
however, it may be useful to allow this trend to be reversed, particularly if improvements are
not achieved for a lengthy period of time. In addition, the way in which vertices are chosen for
random reassignment might also influence performance – for example, we might target those
belonging to a specific colour, those that are causing clashes, those that have been assigned to a
particular colour for the longest, and so on. This requires further research.

An interesting point regarding the structure of solutions has been previously been raised by
Porumbel et al. [47], who consider the sizes of the colour classes. Specifically, they propose
that when solutions involve a small number of large colour classes (such as graph #2 in our
case), good quality colourings tend to result through the identification of large independent
sets. On the other hand, if a solution involves many small colour classes, quality is determined
more by the “productive interaction” between classes. In other words, the proposal is that small
independent sets in isolation do not constitute good features in these cases; rather, quality results
from appropriate combinations of these sets. Such an observation might provide evidence as
to why the GGA recombination has outperformed GPX with graph #3 because, unlike GPX,
it does not require half of the colour classes to be inherited from each parent, thus potentially
allowing more class-combinations to be considered. However, this argument is countered by the
fact that, according to Table 4, GGA has not outperformed the random perturbation operator,
suggesting that it is actually this mechanism that influences the search. Clearly, further research
in this area is also required.

Given such observations, another important avenue of future research will be to increase
our understanding of the links between a graph’s structure and the best algorithms that can then
be used to colour it. This might, for example, be derived by increasing our understanding of the
behaviour, strengths, and weaknesses of the various algorithmic operators available for graph
colouring, and also via more empirical means such as data mining, as discussed by Smith-Miles
and Lopes [49].
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