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Abstract. In this paper a heuristic algorithm is proposed for a school
bus routing problem which is formulated as a capacitated and time-
constrained open vehicle routing problem with a homogeneous fleet and
single loads. The algorithm determines the selection of bus stops from
a set of potential stops, the assignment of students to the selected bus
stops, and the routes along the selected bus stops. Its goals are to min-
imize the number of buses used, the total route journey time and the
student walking distances. It also aims at balancing route journey times
between buses. The performance of the algorithm is evaluated on a set
of twenty real-world problem instances and compared against solutions
achieved by a mixed integer programming model. Reported results in-
dicate that the heuristic algorithm finds high-quality solutions in very
short amounts of computational time.
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1 Introduction

The school bus routing problem (SBRP) is a combinatorial optimization problem
which was first investigated over 40 years ago [18]. In various countries, school
bus transportation forms part of the government’s administrative mechanism
and is funded through local taxes. Students who live at least a certain distance
from the school they attend are entitled to free or subsidized transport to and
from school. In Malta, for example, school transport is provided free of charge
to all state school students residing at least 1km from their school. Additional
restrictions are also typically imposed on the distance that students are expected
to walk between their homes and their designated bus stops.

For the academic year 2019-2020, the Maltese government announced that
e27 million was to be allocated to provide free transport for over 26,000 students.
Given the large amount of funds being invested, it is crucial that governments
make efforts to minimize the total cost required to provide these services. One of
the highest priorities is to limit the number of buses used, since each bus has an
acquisition cost and a driver employment cost. Moreover, it is critical to minimize
operational costs by ensuring that route journey times are kept as short as
possible. This also promotes positive well-being of students, particularly younger
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ones. In Wales, for example, a maximum 45 minute and 60 minute journey time
is recommended for primary and secondary school pupils, respectively.

The SBRP falls into a larger class of problems called vehicle routing problems
(VRPs). These involve designing optimal delivery or collection routes from one or
more depots to a set of geographically scattered customers, subject to a variety
of side constraints [15]. Typical constraints in VRPs include maximum capacity
restrictions on vehicles (capacitated VRP (CVRP)) and maximum time/distance
restrictions on routes. The CVRP first appeared over six decades ago in the
seminal paper by Dantzig and Ramser [9]. Sariklis and Powell [21] proposed
the open VRP (OVRP) in which routes do not start and end at a depot (as in
the classical VRP), but rather either start or end at a depot. The SBRP can
be modelled as a capacitated and time/distance-constrained OVRP (e.g. [4]). A
taxonomic review of the VRP and its variants is presented by Braekers et al. [6].

Desrosiers et al. [10] decompose the SBRP into five subproblems. In the first
subproblem, data preparation, a network containing the schools, student resi-
dences, potential bus stop locations and bus depots is generated. Information on
the number of students at each residence, the school destination of each student,
the number of buses available and their capacities is also specified. The second
subproblem, bus stop selection, seeks to select a subset of bus stops from a set
of potential bus stops and assign students to these stops. Route generation deals
with designing routes that optimize operational efficiency without sacrificing bus
safety and service quality. These objectives are often conflicting in nature since
an improvement in the level of service quality can increase the cost of provision.
The last two subproblems, school bell time adjustment and route scheduling, ad-
just the schools’ opening/closing times to allow buses to service multiple schools
and establish chains of routes that can be executed by the same vehicle.

In this paper, we focus on the single-school SBRP in which a series of routes is
constructed for each school. This is because mixed loads (students from different
schools travelling on the same bus simultaneously) are not permitted in the
locations considered. The majority of the publications on school bus routing
also deal with the single-school SBRP (e.g. [20, 22, 24]). Here, we cover the first
three subproblems stated above. Park and Kim [19] and Ellegood et al. [13]
note that bus stop selection is often omitted in the literature; however, they
classify the solution approaches developed for the SBRP with bus stop selection.
Here, we employ the location-allocation-routing (LAR) strategy, in which bus
stops are first selected, students are assigned to stops, and then route generation
follows. Park and Kim [19] and Ellegood et al. [13] also observe that most studies
assume a homogeneous (same capacity) fleet. We take the same assumption here
and dedicate our research to the morning problem, whereby students are picked
up from stops and dropped off at school. A solution to the afternoon problem,
whereby students are picked up from school and dropped off at stops, can be
found by reversing the routes.

The remainder of the paper is organized as follows. Section 2 defines our
SBRP whereas Section 3 describes our heuristic algorithm developed for this
problem. Section 4 presents the set of real-world problem instances considered
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as well as the computational results. Finally, Section 5 provides the concluding
remarks.

2 Problem Definition

In our SBRP, we define a parameter mw which indicates the maximum walking
distance that a student is expected to walk to get to a bus stop. We also define pa-
rameter me which specifies the minimum walking distance that students should
live from the school to be eligible for school transportation. As in [16], our prob-
lem can be represented via two sets of vertices, V1 and V2, and two sets of edges,
E1 and E2. The vertex set V1 consists of one school v0 and n potential bus stops
v1, v2, . . . , vn and the edge set E1 contains all n(n+ 1) directed edges (u, v) with
u, v ∈ V1 and u 6= v. Each edge (u, v) in the complete directed graph (V1, E1) is
weighted by the shortest driving time t(u, v) from u to v. Meanwhile, the vertex
set V2 consists of eligible student addresses, with each address w ∈ V2 being
weighted by the number s(w) of students living at address w who require school
transportation. E2 is the set {{w, v} : w ∈ V2 ∧ v ∈ V1 \ {v0} ∧ d(w, v) ≤ mw},
where d(w, v) gives the shortest walking distance from address w to bus stop v.

For this problem we can assume that the undirected bipartite graph (V2, V1 \
{v0}, E2) has no isolated vertices. Otherwise, either an address has no bus stop
within walking distance mw (and therefore a new bus stop must be added to
V1), or a bus stop has no address within walking distance mw and can thus be
removed from V1. Moreover, a bus stop v ∈ V1 \ {v0} for which there exists
an address w ∈ V2 with just one incident edge {w, v} shall be referred to as a
compulsory stop. This is because such a stop v is the only stop within walking
distance mw to students living in address w and must therefore be present in a
solution.

A feasible solution to our SBRP is given by a set of routes R = {R1, R2, . . .},
as illustrated in Fig. 1. Each route R ∈ R uses one bus of capacity C which
visits a subset of bus stops and terminates at the school v0. The subset of bus
stops traversed by all routes is denoted by V ′1 ⊆ V1 \ {v0}. This set should cover
each address w ∈ V2 at least once, meaning that students in each address w will
have at least one bus stop in V ′1 within walking distance mw. Such a covering
shall be referred to as a complete covering of V2 whereas a covering which does
not satisfy this property shall be referred to as an incomplete covering of V2. In
addition, the total number s(R) of students boarding the bus on route R should
not exceed the capacity C, and the journey time t(R) of route R should not
exceed the maximum journey time mt. These constraints can be expressed as
follows: ⋃

R∈R
R = V ′1 (1)

∀w ∈ V2, ∃ v ∈ V ′1 | {w, v} ∈ E2 (2)

s(R) ≤ C ∀R ∈ R (3)

t(R) ≤ mt ∀R ∈ R. (4)
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Potential Bus Stop      Student Address      School      Student Walk      Bus Route

Fig. 1. A feasible solution with |R| = 2, |V1| = 21, |V ′1 | = 14 and |V2| = 22.

It is important to note that bus stops in V ′1 are not restricted to feature in
exactly one route in R. For example, there may not be enough spare capacity in
a bus to serve all students waiting at a bus stop v ∈ V ′1 . In that case, bus stop
v must be visited by more than one bus and we call such a stop a multistop.
In VRP literature, this characteristic is referred to as the allowance of split
deliveries [11, 12]. Each student boarding at a multistop is only permitted to
board one specific route serving that stop since, otherwise, a bus stopping at
that multistop may possibly be too full to serve a subsequent stop in its path.

As in [16], the calculation of the journey time t(R) of routeR ∈ R is composed
of two components; the total bus travel time and the total bus dwell time. Each
dwell time within a route captures the time spent servicing a designated bus
stop, i.e. the time spent to halt the bus, open the doors, board the students and
merge back into traffic. In our case, we estimate the dwell time at stop v in route
R by d(v,R) = d1 + d2s(v,R), where s(v,R) represents the number of boarding
students at stop v onto route R, d2 represents the boarding time per student,
and d1 is a parameter which accounts for the remaining servicing time. Here, d1
and d2 are taken to be 15 and 5 seconds, respectively. Therefore, given a route
R = (v1, v2, . . . , vl, v0), the route journey time t(R) is given by

t(R) =

(
l−1∑
i=1

t(vi, vi+1) + t(vl, v0)

)
+

(
l∑

i=1

(
d1 + d2s(vi, R)

))
, (5)

where the first component gives the total bus travel time and the second com-
ponent gives the total bus dwell time.

As previously mentioned, the primary objective of our SBRP is to identify
an appropriate subset of bus stops V ′1 in order to minimize the number |R| of
routes (buses) included in a solution. In our case, this is achieved by attempt-
ing to produce feasible solutions that use the lower bound of d

∑
w∈V2

s(w)/Ce
routes needed to serve all students. A solution satisfying constraints (1)-(3) and
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meeting this lower bound of |R| is always guaranteed since multistops are al-
lowed; however, any one of the routes could potentially violate the maximum
riding time constraint (4). Thus, there may be cases where additional routes are
needed. In the generation of feasible solutions, two secondary objectives and a
tertiary objective are also considered. The first secondary objective deals with
the effectiveness of the school transportation service, whereby we seek to mini-
mize the total student walking distance. Through the other secondary objective,
we aim to target efficiency of the service by minimizing the total route journey
time in a solution. The tertiary objective is employed whenever multiple feasible
solutions have the same minimum total route journey time. Here, we encourage
equity of service by minimizing the discrepancy between the longest and shortest
routes.

3 Algorithm Description

Our heuristic algorithm uses the following overall strategy. Initially, a subset of
bus stops is selected and a nearest neighbour heuristic is employed to construct
an initial solution using a fixed number |R| of routes. As mentioned, |R| is
initially taken to be the lower bound stated in the previous section. Note also that
the initial assignment of stops to routes allows the violation of (4). A local search
routine involving six improvement heuristics is then invoked on this solution to
try and shorten the routes using the current subset of bus stops. After this
routine has completed, a procedure is performed whereby the current subset of
selected bus stops is altered, the current solution is repaired, and the local search
routine is re-applied. This is repeated until a time limit is reached, leading to
an approach similar to iterated local search. If no solution satisfying (1)-(4) is
achieved at this limit, the number |R| of routes is increased by one and the
algorithm is restarted.

3.1 Construction of Initial Solution

In our approach, the initial subset of bus stops V ′1 is selected as follows. First, all
compulsory stops are included in V ′1 . The non-compulsory stops are arranged in
non-increasing order according to the number of currently uncovered addresses
they serve. The stop with the largest such value is then added to V ′1 , breaking
ties randomly. This ordering and selection procedure is repeated until a complete
covering of V2 is obtained. Each address in V2 is then assigned to the closest bus
stop in V ′1 . The assignment of addresses to stops determines the number sV ′

1
(v)

of boarding students at each stop v ∈ V ′1 . It may also be the case that some
stops have no boarding students, in which case they are removed from V ′1 . Next,
each bus stop in V ′1 is assigned to one of the |R| routes such that each bus is not
overloaded. This assignment follows a parallel backward implementation of the
nearest neighbour constructive heuristic. To start, |R| empty routes are defined
and the remaining capacity ci of each route Ri ∈ R is set to C. The |R| closest
stops to the school are then added at the front of the routes, one in each route.



6 M. Sciortino et al.

Closeness to school is measured by the dwell time at the stop plus the shortest
driving time from the stop to the school. In order to calculate the dwell time at
stop v ∈ V ′1 in route Ri, the minimum of ci and sV ′

1
(v) is considered as there

may be more than ci students boarding at stop v. In this case, a multistop is
created since the remaining sV ′

1
(v) − ci students boarding at stop v will need

to be assigned to a different route Rj . The remaining capacities ci are then
updated accordingly. This iterative procedure of determining the closest stop to
the most recently added stop in route Ri, adding it to the front of the route and
updating the remaining capacity ci is repeated until all stops in V ′1 are assigned
to a route. On completion, an initial solution R will have been generated and
can be evaluated according to the cost function described presently.

3.2 Cost Function

A solution R = {R1, R2, . . .} is evaluated according to the cost function

f(R) =
∑
R∈R

t′(R), (6)

where

t′(R) =

{
t(R) if t(R) ≤ mt,

mt +mt(1 + t(R)−mt) otherwise.
(7)

This means that if the journey time of a route R ∈ R exceeds mt, then this
journey time is scaled up heavily via a penalty. Otherwise, it is unaltered. The
addition of the value 1 in the second case of (7) guarantees that two routes both
with journey time at most mt are always preferred over one route with journey
time exceeding mt.

3.3 Local Search Routine

As mentioned, the intention of our local search routine is to shorten the journey
times of routes in R while maintaining the satisfaction of (1)-(3). Our routine
uses a combination of three intra-route and three inter-route operators, with
the former being applied to a single route R1 ∈ R and the latter being applied
to a pair of routes R1, R2 ∈ R. Without loss of generality, assume that R1 =
(v1, v2, . . . , vl1 , v0) and R2 = (u1, u2, . . . , ul2 , v0). Note that this local search acts
on a solution using a fixed subset of bus stops V ′1 . The six operators considered
are the following:

• Exchange: Choose two stops vi, vj in R1, where 1 ≤ i < j ≤ l1, and swap
their position.
• Two-Opt : Choose two stops vi, vj in R1, where 1 ≤ i < i + 3 ≤ j ≤ l1, and

invert sub-route vi, . . . , vj .
• Generalized Or-Opt : Choose stops vi, vj , vk in R1, where 1 ≤ i ≤ j ≤ l1 and

(1 ≤ k < i or j + 1 < k ≤ l1 + 1). Remove sub-route vi, . . . , vj and transfer
it before stop vk, possibly also inverting the sub-route if this yields a better
cost. If k = l1 + 1, then the sub-route is transferred before school v0.
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• Or-Exchange: Choose stops vi, vj in R1, where 1 ≤ i ≤ j ≤ l1, and stop
uk in R2, where 1 ≤ k ≤ l2 + 1. Remove sub-route vi, . . . , vj from R1 and
transfer it before stop uk in R2, possibly also inverting the sub-route if this
yields a better cost. If k = l2 + 1, then the sub-route is transferred before
school v0.

• Cross-Exchange: Choose stops vi1 , vj1 in R1, where 1 ≤ i1 ≤ j1 ≤ l1, and
stops ui2 , uj2 in R2, where 1 ≤ i2 ≤ j2 ≤ l2. Swap sub-routes vi1 , . . . , vj1 and
ui2 , . . . , uj2 , possibly inverting either sub-route if this yields a better cost.

• Creating Multistops: If routes R1, R2 satisfy t(R1) > mt and s(R2) < C,
then choose stop vi in R1, where 1 ≤ i ≤ l1, for which s(vi, R1) ≥ 2. If vi is
not already in R2, then insert a copy of vi in R2 before the stop uk, where
1 ≤ k ≤ l2, (or school v0) which causes the smallest increase in t(R2). Next
transfer z = min{s(vi, R1) − 1, C − s(R2)} students from the occurrence of
stop vi in R1 to the occurrence of stop vi in R2. Here, the value z gives
the maximum number of students who can be transferred (hence, decreasing
t(R1) as much as possible) such that both occurrences of vi have at least one
boarding student and both routes R1 and R2 satisfy (3).

The neighbourhood sizes corresponding to the above operators are O(|V ′1 |2),
O(|V ′1 |2), O(|V ′1 |3), O(|V ′1 |3), O(|V ′1 |4), and O(|V ′1 |3), respectively. These opera-
tors are the same as those used in [16]. The exchange, two-opt and cross-exchange
operators are also used in a similar context in [8], while the generalized Or-opt
and Or-exchange are extensions (case i 6= j) of operators used in [8] and [22].
Note that some Or-exchange and cross-exchange moves can lead to a violation
of (3). Such moves are therefore not evaluated. Moreover, these two operators
can result in duplicate stops in the same route, which are removed as follows.
Without loss of generality, assume that sub-route vi, . . . , vj is being transferred
from route R1 to route R2 and that one stop vh, i ≤ h ≤ j, is already present in
R2. Then stop vh is removed from the sub-route and the students boarding this
occurrence of vh are all transferred to the occurrence of vh in R2.

Our local search routine follows the direction of steepest descent. In each
iteration, all moves in the union of the six neighbourhoods are evaluated and
the move which gives the largest reduction in cost is performed. If multiple moves
give the largest reduction in cost, the one which yields the smallest discrepancy
between the longest and shortest routes in the solution is performed. Such a
breakage of ties aims at balancing the journey times between buses. The local
search routine terminates when a solution whose neighbourhoods contain no
improving moves is reached.

3.4 Generation of Alternative Solutions

Recall that the subset of bus stops V ′1 is fixed during our local search routine.
For this reason, our algorithm also contains an operator that generates a new
subset of bus stops V ′′1 , assigns students to these bus stops, and then creates a
set of routes that use these stops. We designed four variants of the algorithm,
which differ in the way they generate V ′′1 . These are:
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(I) Generating V ′′1 from scratch;
(II) Generating V ′′1 from the subset V ′1 used in the previous iteration;

(III) Generating V ′′1 from the most recent subset V ′1 that yields a feasible solution
with the lowest cost found so far;

(IV) Generating V ′′1 via a trade-off between Variants II and III, whereby V ′′1 has
50% chance of being generated according to Variant II and 50% chance of
being generated according to Variant III.

Note that in Variant III, the subset of stops generated in the previous itera-
tion is used if no subset has yielded a feasible solution so far.

In Variant I, the generation of V ′′1 follows the same selection strategy as that
discussed in Section 3.1 and new routes are again produced via nearest neighbour
construction. In Variants II to IV, the non-compulsory stops in V ′1 are identified
and a random selection of these is removed. Assuming a total number α of
non-compulsory stops, in our case the number of removals is selected according
to a Binomial distribution with parameters α and 3/α so that three stops are
removed on average. Upon removal, if we have an incomplete covering of V2, then
additional stops must be added to V ′1 . If all addresses not covered by the stops
in V ′1 are covered by stops which were not originally in V ′1 , then, at each stage,
a stop from the latter set of stops which serves the largest number of uncovered
addresses is added, breaking ties randomly. If, on the other hand, some address
is also uncovered by the stops which were not originally in V ′1 , then at least one
of the removed stops must be added back. The same selection strategy is applied
in this case and the whole procedure is repeated until a new complete covering
V ′′1 of V2 is achieved. Each address is then reassigned to the closest stop in V ′′1
and stops with no addresses assigned to them are removed from V ′′1 .

Having determined a new subset of bus stops, repairs are then made to R
so that only bus stops in V ′′1 feature in the solution. To do this, all occurrences
of stops in V ′1 \ V ′′1 are first removed from R. For stops v ∈ V ′′1 ∩ V ′1 for which
sV ′′

1
(v) < sV ′

1
(v), sV ′

1
(v) − sV ′′

1
(v) students are removed from occurrences of

v in R. If this results in an occurrence of v with no boarding students, then
this occurrence is removed from R. For stops v ∈ V ′′1 ∩ V ′1 for which sV ′′

1
(v) >

sV ′
1
(v), an attempt is made to add students to occurrences of v in R. If not all

sV ′′
1

(v) − sV ′
1
(v) students can be added, then a new occurrence of v must be

added to R. Stops v ∈ V ′′1 \ V ′1 must also be added to the solution. A new stop
is inserted in a route having the lowest load, at the position which causes the
least increase in the route journey time. If this insertion does not cater for all
students boarding that stop, then the procedure is repeated.

Having repaired solution R (or generated completely new routes in the case
of Variant I), the local search routine is then re-invoked. This repair-and-improve
process is repeated until the time limit is reached.

4 Computational Experiments

A total of twenty real-world problem instances are considered here, summarized
in Table 1. The problem instances pertaining to the UK and Australia originate
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Table 1. Summary statistics for the twenty real-world problem instances, listed in in-
creasing order of |V1|. The number S represents the total number of students, calculated
as

∑
w∈V2

s(w). Distances me and mw are given in km.

Location Country/State |V1| |V2| S me mw C

Mġarr Malta 60 110 190 1.0 1.0 40
Mellieh̄a Malta 83 98 171 1.0 1.0 40
Porthcawl Wales 153 42 66 3.2 1.6 70
Qrendi Malta 161 150 255 1.0 1.0 40
Suffolk England 174 123 209 4.8 1.6 70
Senglea Malta 186 158 266 1.0 1.0 40
Victoria Gozo 292 99 171 1.0 1.0 40
H̄̄andaq Malta 298 170 285 1.0 1.0 40
Pembroke Malta 329 200 335 1.0 1.0 40
Canberra ACT 331 296 499 4.8 1.0 70
Valletta Malta 419 159 268 1.0 1.0 40
Birkirkara Malta 422 181 306 1.0 1.0 40
H̄̄amrun Malta 519 321 192 1.0 1.0 40
Cardiff Wales 552 90 156 4.8 1.6 70
Milton Keynes England 579 149 274 4.8 1.6 70
Bridgend Wales 633 221 381 4.82 1.6 70
Edinburgh-2 Scotland 917 190 320 1.6 1.6 70
Edinburgh-1 Scotland 959 409 680 1.6 1.6 70
Adelaide South Australia 1118 342 565 1.6 1.6 70
Brisbane Queensland 1817 438 757 3.2 1.6 70

from [16] and can be downloaded at [1]. The remainder were generated by us
using the Bing Maps API and can be downloaded at [2]. Each problem instance
was generated as follows. The location of the school was first identified and a
number of random student addresses were selected on/outside a circle of radius
me from the school. The number of students living at each address was generated
randomly according to the following distribution: 1, 2, 3 and 4 with probabilities
0.45, 0.4, 0.14 and 0.01, respectively. As mentioned in [16], this distribution
approximates the relevant statistics in the locations considered. Potential bus
stops were then identified through public records such that each stop has at
least one address within walking distance mw and each address has at least one
stop within walking distance mw. Shortest driving times between each bus stop
pair and shortest walking distances between each bus stop and address pair were
then determined. Here, we use C ∈ {40, 70}, depending on the location of the
problem instance under study, and mt = 2700 seconds (45 minutes).

Our heuristic algorithm was coded in C++ and run on a 3.6GhZ 8-Core Intel
Core i9 processor with 8GB RAM. Variants I to IV were each run 25 times on
each instance. The time limit for each run was taken to be five minutes. Overall,
we found that feasible solutions using the lower bound of d

∑
w∈V2

s(w)/Ce routes
were achieved in nineteen of the twenty instances in all runs. The only instance
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which required one additional route was the rural-based Suffolk instance. This
was also observed in [16].

Statistics on the results achieved by our algorithm are summarized in Table
2. Columns 3 to 6 display the average number of iterations performed in each
algorithm variant. For each variant, this number was compared with the average
number of iterations that resulted in solutions satisfying (1)-(4). For Bridgend,
approximately 74%, 61%, 26% and 32% of the iterations performed in Variants I
to IV, respectively, produced infeasible solutions, on average. For Brisbane, the
four average proportions of infeasible solutions were all less than 0.2%. Some
infeasible solutions were also produced in Variants II and IV for Porthcawl and
Variants I, II and IV for Suffolk. The average proportions were both less than
0.04% for Porthcawl and all less than 0.7% for Suffolk. All remaining instances
saw (1)-(4) satisfied in all runs.

According to Table 2, Variant II performed the highest average number of
iterations for all instances except Edinburgh-2. On the contrary, Variant I per-
formed the lowest average number of iterations for all instances except Porthcawl
and Edinburgh-2. This was expected given that this variant does not use infor-
mation from previous iterations when altering the current subset of bus stops.
Consequently, applications of local search take longer in each iteration. It is also
evident that Variant IV performed a higher average number of iterations than
Variant III for all instances except Edinburgh-2.

Table 2. Number of iterations performed by our algorithm. All figures are averaged
across the 25 runs, rounded to the nearest integer, plus/minus the standard deviation.

Location |R| Variant I Variant II Variant III Variant IV

Mġarr 5 12777 ± 112 32131 ± 367 25137 ± 360 27482 ± 248
Mellieh̄a 5 1323 ± 9 6951 ± 53 5359 ± 107 5848 ± 74
Porthcawl 1 91916 ± 1091 96843 ± 1210 85351 ± 2465 92171 ± 3915
Qrendi 7 9602 ± 68 28176 ± 230 22880 ± 656 23901 ± 621
Suffolk 4 3384 ± 37 8076 ± 95 6436 ± 193 6660 ± 191
Senglea 7 16026 ± 105 45776 ± 317 42425 ± 1177 43792 ± 896
Victoria 5 2124 ± 31 6956 ± 90 5135 ± 206 5367 ± 254
H̄̄andaq 8 2439 ± 30 8438 ± 120 7433 ± 495 7731 ± 362
Pembroke 9 4208 ± 29 16109 ± 160 14170 ± 621 14702 ± 468
Canberra 8 2431 ± 42 10073 ± 167 8038 ± 290 8456 ± 247
Valletta 7 6639 ± 6 21976 ± 78 20915 ± 577 21405 ± 403
Birkirkara 8 4691 ± 70 17519 ± 276 16039 ± 635 16466 ± 491
H̄̄amrun 9 3233 ± 54 13681 ± 242 13210 ± 258 13404 ± 259
Cardiff 3 16241 ± 102 25386 ± 181 25330 ± 185 25345 ± 131
Milton Keynes 4 8601 ± 7 20039 ± 40 18699 ± 637 19196 ± 272
Bridgend 6 3932 ± 57 11066 ± 106 9944 ± 119 10277 ± 85
Edinburgh-2 5 5681 ± 66 5692 ± 55 5709 ± 52 5680 ± 60
Edinburgh-1 10 1792 ± 20 6489 ± 83 6365 ± 141 6417 ± 128
Adelaide 9 1745 ± 24 5943 ± 72 5530 ± 173 5668 ± 134
Brisbane 11 742 ± 18 3304 ± 71 3241 ± 70 3262 ± 70
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Fig. 2. Boxplots displaying the performance of the variants on the Mellieh̄a, Victoria,
Bridgend and Brisbane instances.

For each instance, a Kruskal-Wallis test on the 100 total journey times (in
minutes) reached by our heuristic algorithm revealed statistically significant
differences between the algorithm variants (p < 0.001). Post-hoc Bonferroni-
adjusted pairwise comparison tests indicated that, for 16 instances, the total
journey times of Variants I and II are significantly different at the 0.05 level
than those of Variants III and IV. Half of these instances also saw a significant
difference between Variants I and II. Two instances (Porthcawl and Edinburgh-
2) saw significant differences between Variant III and all other variants, whereas
the Mġarr instance saw significant differences between Variant I and all other
variants. For the Mellieh̄a instance, significant differences were found between
Variants I and II, I and IV, and II and III. Boxplots displaying the performance
of the variants on four selected instances are displayed in Fig. 2.

Moving to Table 3, Columns 4 to 7 display the best total journey times for
the different algorithm variants. Each instance’s best reported result across all
variants is displayed in bold and the number of runs giving that result is shown in
brackets. According to Table 3, Variants I to IV produced best reported results
in 2, 3, 16 and 14 instances, respectively. Moreover, Variants I to IV produced
best total journey times that are at most 14.37%, 8.76%, 4.28% and 2.14%
(respectively) worse than the best reported results. It is also evident that our
best reported result for eight instances was achieved by only one run. For the
other twelve instances, multiple runs reached the best reported result. Some or
all multiple runs for all these instances except Porthcawl and Edinburgh-2 have
different corresponding subsets of bus stops. The total number of alternative
subsets of bus stops is given in Column 3 of Table 3.

The best reported results from our heuristic algorithm are also compared with
those of Lewis and Smith-Miles [16], in Column 2. The algorithm used in [16] is
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similar to Variant II of our algorithm, but makes use of a first-fit-decreasing bin-
packing heuristic for the assignment of bus stops to routes rather than a nearest
neighbour heuristic. Our best reported results for two instances (Porthcawl and
Cardiff) match those in [16]. Additionally, our best reported results for six of
the remaining eight instances are better than those in [16].

An attempt was also made to improve each instance’s best reported result
from our heuristic algorithm. For this purpose, a mixed integer programming
(MIP) model was formulated as shown in the appendix. This model was exe-
cuted using Gurobi 9.0 with a run time limit of one hour per bus stop subset.
Each run was also seeded with the best feasible solution found by our heuristic
algorithm for that bus stop subset. The MIP results are presented in Columns 8
to 10 of Table 3. Column 8 gives the total route journey time of the best incum-
bent solution reached. Column 9 displays the percentage improvement between
the best reported result from our heuristic algorithm and the best incumbent re-
sult. Finally, Column 10 gives the relative MIP optimality gap between the best
incumbent result and the best known lower bound on the optimal total route
journey time. Note that Gurobi was able to find a solution having a better total
route journey time for four instances and the percentage improvements of these
range between 0.19% and 1.58%. On the other hand, Gurobi was not able to
improve the heuristic algorithm solution of ten instances within the time limit.
For the remaining six instances, the solver did not provide any results before the
time limit was reached. The optimality gaps for the achieved MIP results range
between 8.35% and 69.17%.

5 Conclusions and Future Developments

In this paper a real-world SBRP has been studied, which incorporates several fea-
tures found in the literature such as bus capacities, student eligibility, maximum
student riding time, maximum student walking distance, multistops (multiple
buses visiting a single bus stop) and bus dwell times. A heuristic algorithm has
been developed which encompasses the first three subproblems of the SBRP, as
defined in [10].

Experiments conducted on twenty problem instances from Malta, the UK
and Australia demonstrate the success of the heuristic algorithm on a variety of
real-sized instances. For all instances, our algorithm was able to find high-quality
solutions in a very short computational time. It also copes with large-scale in-
stances of more than 1800 potential bus stops and 750 students. Through differ-
ent variants, our algorithm has provided multiple subsets of bus stops yielding
the best reported total journey time for ten instances. This extension to what
has been done in [16] is beneficial since government administrators can liaise
with bus operators to identify the most appropriate subset of bus stops based
on factors such as bus depot locations and bus stop accessibility.

The performance of our heuristic algorithm was also compared against solu-
tions achieved through a branch-and-cut method. Only four of the twenty best
reported results from the heuristic algorithm turned out to be slightly worse (by
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less than two minutes) than the results achieved by MIP. The MIP optimality
gaps turned out to be higher than expected. These may be improved by allowing
a longer time limit.

The proposed heuristic algorithm as well as the MIP model formulation pre-
sented in this paper can be extended to other SBRP variants. One such variant is
the heterogeneous fleet, in which buses are characterized by different capacities,
as studied in [17, 20, 24] amongst others. Another potential future development
is the consideration of multi-tripping where several routes, possibly pertaining
to different schools, are merged so that buses are able to perform multiple routes
successively. Recent work in this area is discussed in [5, 23]. It is also suggested
that future work should address uncertainty in the bus travel times as this will
make the heuristic algorithm more applicable in real-world settings (e.g. [3,7,25]).
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Appendix

The MIP model presented here produces solutions consisting of cycles that start
and end at the school. The arc from the school to the first bus stop in each route
is then excluded. This is possible by assuming that the driving time from the
school to any stop is zero.

The decision variables of our model are as follows. Binary variable xuvR
indicates whether route R ∈ R travels from u ∈ V1 to v ∈ V1 \ {u}. Binary
variable yvR indicates whether route R ∈ R visits v ∈ V1. Also, binary variable
zwv indicates whether students in address w ∈ V2 walk to stop v ∈ V1 \ {v0}.
Variable svR ∈ {0, 1, . . . , C} gives the number of students boarding route R ∈ R
from stop v ∈ V1 \ {v0}. Moreover, variable lvR ∈ {0, 1, . . . , C} gives the total
load of route R ∈ R just after visiting stop v ∈ V1 \ {v0}. Finally, variable
tR ∈ [0,mt] specifies the total journey time of route R ∈ R. The MIP formulation
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is as follows:

min
∑
R∈R

tR (8)

s.t.
∑
u∈V1

xuvR = yvR ∀v ∈ V1, R ∈ R (9)

∑
u∈V1

xvuR = yvR ∀v ∈ V1, R ∈ R (10)

yv0R ≥ yvR ∀v ∈ V1 \ {v0}, R ∈ R (11)∑
v∈V1\{v0}
d(w,v)≤mw

zwv = 1 ∀w ∈ V2 (12)

∑
R∈R

yvR ≥ zwv ∀v ∈ V1 \ {v0}, w ∈ V2 (13)

∑
w∈V2

s(w)zwv −
∑
R∈R

svR = 0 ∀v ∈ V1 \ {v0} (14)

yvR ≤ svR ∀v ∈ V1 \ {v0}, R ∈ R (15)

CyvR ≥ svR ∀v ∈ V1 \ {v0}, R ∈ R (16)

luR + svR − C(1− xuvR) ≤ lvR ∀u, v ∈ V1 | v 6= v0, R ∈ R (17)

luR + svR + C(1− xuvR) ≥ lvR ∀u, v ∈ V1 | v 6= v0, R ∈ R (18)∑
u,v∈V1

t(u, v)xuvR +
∑

v∈V1\{v0}

(d1yvR + d2svR) = tR ∀R ∈ R. (19)

Objective function (8) minimizes the total journey time of all routes. Con-
straints (9)-(11) relate to stop and school visits. Constraints (9)-(10) guarantee
that if route R ∈ R visits v ∈ V1, then route R should enter and leave v exactly
once. Next, Constraints (11) force each route R ∈ R to visit school v0 whenever
it visits at least one stop v ∈ V1 \ {v0}. Constraints (12)-(14) relate to student
walks and pickups. Constraints (12) ensure that students living in each address
w ∈ V2 walk to exactly one stop within walking distance mw. Constraints (13)
assure that no student walks to an unvisited stop, while Constraints (14) guar-
antee that the total number of students boarding from stop v ∈ V1\{v0} is equal
to the total number of students walking to that stop. Constraints (15)-(16) relate
to student boardings. These constraints force the number of students boarding
route R ∈ R from stop v ∈ V1 \ {v0} to be 0 if route R does not visit stop v. If
route R visits stop v, then (15) also updates the lower bound on the number of
boarding students to 1. In addition, Constraints (17)-(18) relate to route loads
and also serve as subtour elimination constraints as proposed in [14]. Note that
lv0R = 0 ∀R ∈ R. These constraints guarantee that no route contains a subtour
disconnected from school v0 and that each route load increases in accordance to
the number of students boarding the bus on that route. In fact, if route R ∈ R
goes from u ∈ V1 to stop v ∈ V1 \ {u, v0}, then the load of route R just after
visiting stop v is set equal to the sum of the load of route R just after visiting u
and the number of students boarding route R from stop v. Finally, Constraints
(19) calculate the total journey time of each route R ∈ R.


