
Finding Happiness: An Analysis of the Maximum Happy Vertices
Problem

Lewis, R.1, Thiruvady, D.2, and Morgan, K.3

1School of Mathematics, Cardiff University, Cardiff, CF24 4AG, Wales.
2School of Mathematical Sciences, Monash University, Clayton VIC, Australia.

3School of Information Technology, Deakin University, Geelong VIC, Australia.,
LewisR9@cf.ac.uk, dhananjay.thiruvady@monash.edu, kerri.morgan@deakin.edu.au

November 15, 2018

Abstract

The maximum happy vertices problem involves determining a vertex colouring of a graph such that the number
of vertices assigned to the same colour as all of their neighbours is maximised. This problem is trivial if no vertices
are precoloured, though in general it is NP-hard. In this paper we derive a number of upper and lower bounds on the
number of happy vertices that are achievable in a graph and then demonstrate how certain problem instances can be
broken up into smaller subproblems. Four different algorithms are also used to investigate the factors that make some
problem instances more difficult to solve than others. In general, we find that the most difficult problems are those
with relatively few edges and/or a small number of precoloured vertices. Ideas for future research are also discussed.

Keywords: Happy Colouring; Graph Colouring; Problem Subdivision; Integer Programming.

1 Introduction
Problems that involve the colouring of graphs come in many guises including vertex colouring, edge colouring, face
colouring, precolouring, list colouring, dynamic colouring, and equitable colouring [12]. Such problems typically
involve assigning colours to particular elements of a graph such that elements deemed to be “conflicting” are given
different colours. Perhaps the most well-known of these problems is the vertex colouring problem where, using a
limited set of colours, each vertex of a graph needs to be assigned to a colour such that no pair of adjacent (conflicting)
vertices are given the same colour. This has applications in many timetabling, logistical and scheduling problems,
where sets of conflicting entities such as tasks, events, or people need to be efficiently allocated to a limited set of
resources [9, 12, 14, 16].

In recent times, interest has been growing in graph colouring problems where adjacent entities need to be assigned
to the same colour, as opposed to different colours [3, 5, 15, 17, 18]. In the case of vertex colouring, this can be useful
in areas such as social networking, where we might be interested in assigning groups of related people (vertices) to
the same resource, such as a team or a task. Recent studies have also looked at how we might design seating plans for
large social gatherings such as weddings, where the aim is simultaneously place people with their friends, but apart
from their adversaries [7, 13].

In a recent paper, Li and Zhang [15] introduced the notion of vertex “happiness”. Let Γ(v) denote the set of vertices
adjacent to a vertex v.

Definition 1. Let G = (V,E) be a simple graph and let c : V → {1, . . . , k} be a colouring of all vertices in G. A
vertex u ∈ V is happy if c(u) = c(v) for all v ∈ Γ(u); else it is unhappy.

In other words, a vertex is considered happy if and only if it is assigned to the same colour as all of its neighbouring
vertices, otherwise it is unhappy. This naturally gives rise to the following optimisation problem:

Definition 2. The Maximum Happy Vertices (MHV) problem takes an undirected graph G = (V,E) with n vertices
and m edges, an integer k, a subset of vertices V ′ ⊆ V where |V ′| ≥ k, and a partial colouring c : V ′ → {1, . . . , k}
such that ∀i ∈ {1, . . . , k}, ∃v ∈ V ′ : c(v) = i. The goal is to extend c to a total colouring c̃ : V → {1, . . . , k} such
that the number of happy vertices is maximised.

1

v1 v2

v3 v4 v5 v6

v7 v8

U

H

U

U U

U

H

U

Figure 1: Example problem instance with n = 8 vertices, m = 11 edges, k = 2 colours, and |V ′| = 3 precoloured
vertices (left). The graph on the right shows a corresponding solution, defined by the total colouring c̃ : V → {1, 2},
comprising H(G) = 2 happy vertices and n−H(G) = 6 unhappy vertices.

In this definition, the vertices contained in V ′ are the problem’s precoloured vertices; otherwise they are free
vertices, belonging to the set V − V ′. Free vertices are originally uncoloured, but will all need to be coloured in the
final solution.

As stated in Definition 2, it is necessary that each colour is used at least once in the partial colouring c. Precoloured
vertices can themselves be happy or unhappy—indeed, their status could even be determined by c before any of the
free vertices have been coloured. Once a total colouring ofG has been defined, the number of happy vertices is denoted
by H(G) where, 0 ≤ H(G) ≤ n. The optimum (maximum) number of happy vertices in a graph G is denoted by
H(G)∗.

An example problem instance and candidate solution to the MHV problem is shown in Figure 1. This illustrates that
the problem can also be seen as one of partitioning: as input, we take a set of nonempty colour classes {V1, V2, . . . , Vk}
such that

⋃k
i=1 Vi = V ′ and v ∈ Vi ⇔ c(v) = i. Our task is to assign the free vertices to the k colour classes such

that H(G) is maximised,
⋃k

i=1 Vi = V , and Vi ∩ Vj = ∅ ∀i 6= j. The example solution in Figure 1 may therefore be
written as {{v1, v2, v3, v4}, {v5, v6, v7, v8}}.

A practical application of the MHV problem can occur where we have a set people, some of whom have been
preassigned to groups for a team building exercise. The remaining people then also need to be assigned to these
groups such that the maximum number of people are happy (i.e., in a group containing all of their friends). Similarly,
it could arise when seeking to assign these people to dormitories or hotel rooms. The problem also has more general
applications in cluster analysis, where some objects are preassigned to clusters, and the task is to assign the remaining
objects to clusters such that strongly related objects occur in the same cluster [10]. Let us note, though, that although
this problem may somehow sound like the “opposite” of a vertex colouring problem, we cannot tackle it by simply
producing a proper colouring of the complement of G, as this simply leads to a solution in which nonadjacent pairs of
vertices are never assigned to the same colour.

As mentioned, the MHV problem was originally proposed by Li and Zhang in 2015 [15]. In their paper, the authors
also considered the related Maximum Happy Edge (MHE) problem, which involves colouring vertices of a graph such
that the number of “happy edges” (i.e., edges with endpoints of the same colour) is maximised. They first showed that
the MHE problem with k ≥ 3 is NP-complete by demonstrating a polynomial reduction from the three terminal cut
problem. The MHV problem was itself then shown to be NP-complete by showing that MHE ∝ MHV. It was also
shown that both problems are polynomially solvable for k ≤ 2.

In subsequent work, Aravind et al. [4] went on to show that the MHE and MHV problems are polynomially
solvable for cycle-free graphs (trees). Later, Aravind et al. [5] proved that both problems also remain NP-complete for
general bipartite graphs (for k ≥ 3) and that the MHV problem is hard for split graphs. It is now also known that both
problems are polynomially solvable when G has bounded treewidth or bounded neighbourhood diversity [3, 5].

To our knowledge, three approximation algorithms for the MHV problem on general graphs have previously been
suggested in the literature. In their original paper, Li and Zhang [15] proposed two single-parse constructive algorithms
for the problem with approximation ratios of 1/k and Ω(1/∆3). These are considered in more detail in Section 2. More
recently, Zhang et al. [18] presented an algorithm with an approximation ratio of 1/(∆ + 1) that operates by solving a
simple linear programming relaxation of the MHV problem. If the solution produced for this relaxation happens to be
integral, then it corresponds to the optimum solution; more likely, however, is that the solution is fractional, in which
case the non-integer decision variables are rounded via an iterative process to produce an approximate solution.

Given a total colouring of a graph, observe that the removal of an edge can either maintain or increase the current
number of happy vertices, but that the addition of an edge can only maintain or decrease the number of happy vertices.
Intuitively, this suggests that optimum solutions for dense graphs will tend to feature fewer happy vertices than those
of sparse graphs. In this paper we confirm this by taking the linear programming ideas of Zhang et al. [18] a step
further by implementing and testing a more compact integer programming (IP) formulation for the MHV problem.
In Section 2 we start by reviewing the two constructive algorithms for the MHV problem. In Section 3 we then use
these to help derive a number of bounds for the problem, before describing a way of subdividing problem instances
in Section 4. Section 5 then contains our IP formulation together with results from a large set of experiments that
demonstrate the characteristics that contribute towards making a problem difficult to solve. A CMSA algorithm that

2

extends this IP formulation is then also proposed to help investigate the affects of problem size. Section 6 concludes
the paper and conducts further discussions.

2 Constructive Algorithms
As mentioned, Li and Zhang [15] previously proposed two single-parse constructive algorithms for the MHV problem.
In this section we now review these in detail, particularly because they will be used as a point of comparison later in this
paper. The first algorithm, GREEDY-MHV, operates by simply assigning all free vertices to colour 1 before calculating
the resultant number of happy vertices. This is then repeated using colours 2, . . . , k, and the best of these k solutions
is taken. This algorithm has an approximation ratio 1/k and complexity O(km) since, for each colour 1, . . . , k, it is
necessary to determine the happiness of each free vertex by inspecting all of its neighbours.

The second algorithm from [15] is the so-called subset-growth algorithm (GROWTH-MHV), which is known to
have an approximation ratio within a factor of Ω(1/∆3), where ∆ = max{deg(v) : v ∈ V } is the maximum vertex
degree in the graph being considered. This algorithm involves using vertex labels that are based on whether the vertices
are coloured or not and also the statuses of their neighbours. These labels, which we now define, are most conveniently
described using the partition-based interpretation of the MHV problem (Section 1), where vertices need to be assigned
to the colour classes V1, . . . , Vk.

Definition 3. Let v be a vertex that has been assigned to a colour class Vi ∈ {V1, . . . , Vk}:

• v is an H-vertex if it is happy (i.e., all neighbours of v are also assigned to Vi).
• v is a U-vertex if it is destined to be unhappy (i.e., at least one neighbour of v has been assigned to a colour

class Vj 6= Vi).
• v is a P-vertex if it has the potential to be happy (i.e., some neighbours of v are uncoloured, but all of its coloured

neighbours are in Vi).

Now let v be a vertex not yet assigned to a colour class:

• v is an LP-vertex if it is adjacent to a P-vertex.
• v is an LH-vertex if it is not adjacent to a P-vertex, but has the potential to become happy (i.e., it is adjacent to

U-vertices of only one colour).
• v is an LU-vertex if it is not adjacent to a P-vertex, and it is destined to be unhappy.
• v is an LF-vertex if it is not adjacent to any coloured vertex.

The GROWTH-MHV algorithm operates by colouring one or more free vertices at each iteration. Specifically, the
neighbours of P-vertices are prioritised, followed by LH-vertices and their neighbours, then LU-vertices, and then LF
vertices. It executes as follows.

1. Let v be a P-vertex. If no such vertex exists, go to Step 2. Else, let i be the colour of v, assign all neighbours of
v to Vi and return to Step 1.

2. Let v be an LH-vertex. If no such vertex exists, go to Step 3. Else, let i be the colour of any U-vertex adjacent
to v, assign v and all its uncoloured neighbours to Vi, and go to Step 1.

3. Let v be an LU-vertex. If no such vertex exists, go to Step 4. Else, let i be the colour of any U-vertex adjacent
to v, assign v to Vi, and return to Step 1.

4. Let v be an LF-vertex. If no such vertex exists, all vertices have been coloured, so end. Else, assign v to an
arbitrary colour and return to Step 1.

Note that in Steps 1 and 2 of this algorithm the selected vertex v is guaranteed to become happy. On completion
of any of the steps, the labels of various other vertices in the graph can also change. For Steps 3 and 4, this could be v
and any of its neighbours; for Steps 1 and 2, it could be any vertex within a distance of three (edges) from v.1 Since
such updates are of complexity O(m), the overall complexity of GROWTH-MHV is O(nm).

3 Bounds for the MHV Problem
In this section we give some bounds on the number of happy vertices that are achievable for various graphs. Lower
bounds are derived by considering the behaviour of the GREEDY-MHV algorithm and a simplified variant, while upper
bounds are generated using the concept of unhappy paths, given in Definition 5 below.

1In [15], Step 1 and 2’s affected vertices are stated to be anything within distance two of v. However, this is incorrect. For instance, consider the
path of vertices (v1, v2, v3, v4) with labels (P, LP, P, LP), and colours (red, none, blue, none), respectively. If v1 is now selected by the algorithm,
this causes v2 to also become red; consequently, v1 is now an H-vertex, and v2 a U-vertex. In addition, v3 now becomes a U-vertex, which could
also change the label of v4 to either LH or LU.

3

3.1 Lower Bounds
For lower bounds, we first consider d-regular graphs (that is, graphs in which every vertex has degree of exactly d).

Theorem 1. Let G = (V,E) be a d-regular graph and V ′ ⊆ V be the precoloured vertices. Then there exists a
solution with at least n− |V ′|(d+ 1) happy vertices.

Proof. According to the behaviour of GREEDY-MHV, all vertices in (V − V ′) will be assigned to a single colour.
This means that, at most, all of the vertices of V ′ and their neighbours Γ(V ′) are unhappy, so

H(G) = n− the number of unhappy vertices
≥ n− |V ′| − |Γ(V ′)|
≥ n− |V ′| − |V ′|d
= n− |V ′|(d+ 1). (1)

A similar theorem generalises this result to all graphs by simply replacing d with a graph’s maximum degree ∆:

Theorem 2. Given G = (V,E) and V ′ ⊆ V , there exists a solution with at least n− |V ′|(∆ + 1) happy vertices.

Note, however, that this bound will be lower and potentially less accurate for graphs whose degree distributions
have a positive skew—that is, a relatively small number of high-degree outliers—such as scale-free graphs.

We now make some statements concerning random graphs. These are graphs in which each pair of vertices u, v is
connected by an edge with a fixed probability p. The set of all such graphs for particular p and n values is denoted by
G(n, p). Given a particular problem instance, let A ⊆ V ′ be the largest subset of precoloured vertices that are assigned
to the same colour a ∈ {1, . . . , k}. Also, let H(G)a denote the number of happy vertices that would result if all free
vertices of G were also assigned to colour a.

Theorem 3. Let G ∈ G(n, p). Then:

(n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k ≤ E[H(G)a] ≤ (n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k +
|V ′|(k − 1)

k
. (2)

Proof. Observe that |V ′|/k ≤ |A| ≤ |V ′| − k + 1. If all free vertices are assigned to colour a, it follows that a vertex
in the set V − (V ′ − A) is happy if and only if it has no neighbours belonging to the set V ′ − A. Without loss of
generality, suppose v1, v2, . . . , vl are the vertices assigned to colour a (i.e., belonging to the set V − (V ′ − A)). Now
let Xi be a binary indicator variable for the event that vertex vi is happy (for i ∈ {1, 2, . . . , l}). Then the expected
number of happy vertices among these is:

E[X] = E

[
l∑

i=1

Xi

]

=

l∑
i=1

E[Xi] (by linearity of expectation)

=

l∑
i=1

(1− p)|V
′−A|

= (n− |V ′|+ |A|)(1− p)|V
′−A| (3)

Now, because |A| ≥ |V ′|/k, Equation (3) becomes:

E[X] ≥ (n− (k − 1)|V ′|
k

)(1− p)|V
′−A|

≥ (n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k . (4)

The variance of X is:

Var[X] =

l∑
i=1

Var[Xi]

=

l∑
i=1

(
E[X2

i]− E[Xi]
2
)

= l
(

(1− p)|V
′−A| − (1− p)2|V ′−A|

)
= (n− |V ′|+ |A|)(1− p)|V

′−A|
(

1− (1− p)|V
′−A|

)
. (5)

4

Again, since |A| ≥ |V ′|/k, Equation (5) becomes:

Var[X] ≥ (n− (k − 1)|V ′|
k

)(1− p)|V
′−A|

(
1− (1− p)|V

′−A|
)

≥ (n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k

(
1− (1− p)|V

′−A|
)
. (6)

Here, note that there will be at least k − 1 vertices in the set V ′ − A, meaning that (1 − p)|V ′−A| ≥ (1 − p)k+1. It
follows that:

Var[X] ≥ (n− (k − 1)|V ′|
k

)(1− p)
(k−1)|V ′|

k

(
1− (1− p)k+1

)
. (7)

Finally, it is also possible that some of the vertices in the set V ′ − A will be happy. Thus, the expected number of
happy vertices, E(H(G)a) lies in the range:

(n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k ≤ E[H(G)a] ≤ (n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k + |V ′ −A|

≤ (n− (k − 1)|V ′|
k

)(1− p)
|V ′|(k−1)

k +
|V ′|(k − 1)

k
(8)

as required.

Here, the upper bound is reached when all vertices that are not coloured with colour a are happy. When k = 1,
the expected number of happy vertices will be n, which is confirmed by Theorem 3 since (n + 0)(1 − p)0 = n ≤
E[H(G)a] ≤ n(1−p)0 +0 = n. On the other hand, for fixed k > 1, as |V ′| → n, the bounds for the expected number
of happy vertices are (n− n(k−1)

k)(1− p)
n(k−1)

k = (1− p)
n(k−1)

k ≤ E[H(G)a] ≤ (1− p)
n(k−1)

k + n(k−1)
k .

3.2 Upper Bounds
To generate upper bounds, it is useful to first consider the conditions necessary for all vertices in a graph to be happy.
We can then use these ideas to provide a method of calculating an upper bound on the number of happy vertices in any
arbitrary graph.

Definition 4. Let G be a graph comprising components C1, . . . , Cl. Then col(Ci) denotes the number of different
colours used by the precoloured vertices in a component Ci.

Obviously, if G is connected, then it contains just one component C1, giving col(C1) = col(G) = k.

Definition 5. Given a graph G = (V,E), a subset of vertices V ′ ⊆ V , and a partial colouring c : V ′ → {1, . . . , k},
an unhappy path is a simple path whose internal vertices (if any) are not coloured, and whose terminal vertices u and
v are precoloured differently: i.e., c(u) 6= c(v).

Example unhappy paths from Figure 1(a) include (v1, v2, v6) and (v1, v2, v5, v8, v7), with lengths of two and four
(edges) respectively. These definitions bring us to the following:

Theorem 4. H(G)∗ = n if and only if G comprises l ≥ k components C1, . . . , Cl, and col(Ci) ≤ 1 for all i ∈
{1, . . . , l}.

Proof. If H(G) = n, then a total colouring has been achieved in which the vertices in all components are happy. This
implies that each component Ci has either col(Ci) = 0, in which case all vertices in Ci have been assigned to the
same arbitrary colour, or col(Ci) = 1, in which case each free vertex in Ci has been allocated to the same colour as
its precoloured vertices.

Now let Ci be a component for which col(Ci) > 1. This implies the existence of an unhappy path in Ci. If this
path is of length one, neither u nor v can be happy. Similarly, if its length is greater than one, then in a total colouring
there must exist at least one pair of adjacent vertices in this path whose colours are different. Hence H(G)∗ < n.

The above theorem also allows us to make statements about the behaviour of the GROWTH-MHV algorithm.

Theorem 5. If H(G)∗ = n then GROWTH-MHV is exact.

Proof. It is sufficient to consider each component Ci of G separately. According to Theorem 4, each Ci has either
col(Ci) = 0 or col(Ci) = 1. If col(Ci) = 1, then any coloured vertex v in Ci that is not yet happy will be a P-vertex
and will therefore be selected in Step 1 of the algorithm. All neighbouring vertices will then assume the same colour
as v and will each become either an H-vertex or a P-vertex. Step 1 will be repeated on Ci until all of its vertices are
H-vertices.

If col(Ci) = 0, then Ci comprises only LF-vertices. Step 4 of the algorithm will now select one of these and assign
it to a random colour, resulting in col(Ci) = 1. The previous case now applies.

5

Because their presence in a graph implies the existence of unhappy vertices, unhappy paths can also be used for
generating an upper bound H̄(G) on H(G)∗. A process for doing this is outlined in the following steps. It involves
repeatedly identifying and removing unhappy paths from a graph while keeping count of the minimum possible number
of unhappy vertices x. To start, x is set to zero, and all precoloured vertices are marked as having not yet been counted.

1. Let P = (u, v) be an unhappy path in G of length one. If no such path exists, go to Step 3.
2. If neither u nor v have yet been counted, set x = x+2; else, if just one of u or v has been counted, set x = x+1.

Now, remove the edge {u, v} from G, mark u and v as having been counted, and return to Step 1.
3. Let P be an unhappy path in G with length greater than one. If no such path exists, return the upper bound
H̄(G) = n− x and end.

4. Let u and v be the terminal vertices of P . If neither u nor v have yet been counted, set x = x + 2; else, set
x = x+ 1. Now, mark u and v as having been counted, remove all internal vertices in P from G, and return to
Step 3.

Note that this process involves mechanisms in Steps 2 and 4 to avoid counting vertices more than once in the calculation
of x. In the first two steps, all unhappy paths of length one are removed fromG and x is incremented accordingly. Steps
3 and 4 then carry out a similar process by removing longer paths, though the rules for incrementing x are slightly
different to allow the possibility of multiple unhappy paths existing between two differently-precoloured vertices.

In Step 3, any arbitrary unhappy path P can be chosen. For the results reported in this paper we use a greedy
strategy of selecting the shortest unhappy path in the current graph, which is identified through applications of breadth-
first search. At each step this results in the smallest number of vertices being removed from the current graph. The
intention is to allow the process to iterate for a larger number of cycles, thereby increasing x and improving H̄(G).
Other strategies might also be applied in practice, however.

4 Problem Subdivision
In this section we show how instances of the happy colouring problem can be broken up into smaller components,
allowing the algorithm of choice to be applied to each component separately. These sub-solutions can then be merged
into a single solution for the entire graph.

Firstly, observe that if we have a disconnected graph G comprising multiple components C1, . . . , Cl then the
happiness (or otherwise) of a vertex in one component can have no influence on the status of vertices in another
component. This means that if we were to compute total colourings for all components separately, then

∑l
i=1H(Ci) =

H(G). We now extend this idea to connected graphs using the idea of H-U separating sets.

Definition 6. Given a graphG, a separating set S is a subset of vertices S ⊆ V whose removal increases the number of
components inG. An H-U separating set is a separating set comprising only H- and U-vertices (recalling Definition 3).

Let C1, . . . , Cl>1 be the components resulting from the removal of an H-U separating set S. Now, for each Ci ∈
{C1, . . . Cl}, let Gi be the subgraph induced by the vertices of Ci and S. Finally, if Gi contains a vertex v ∈ S that
was a U-vertex in G but is now an H-vertex, add an additional dummy vertex u with an arbitrary colour c(u) 6= c(v)
together with the edge {u, v}. This ensures that v is also a U-vertex in Gi.

An example of this process is shown in Figures 2(a) and (b), resulting in the subgraphs G1, G2, and G3. Note that
two dummy vertices marked by asterisks have been imposed here, as required. Figure 2(c) then shows total colourings
of each subgraph, produced by an arbitrary method. A final solution to the original graph G is formed by merging
these subgraphs and deleting the dummy vertices, as shown in Figure 2(d).

Theorem 6. Let G1, . . . , Gl be totally coloured subgraphs that were originally constructed using an H-U separating
set S, as explained above. Also, let G be a totally coloured graph, formed by merging G1, . . . , Gl. Then

H(G) =

(
l∑

i=1

H(Gi)

)
− (l − 1)H(S). (9)

Proof. It is sufficient to show that a vertex v is happy in Gi if and only if it is also happy in G.
First, note that in each Gi, vertices originating from S must have the same status as their counterparts in G: if

v ∈ S is an H-vertex in G, then its set of neighbours in Gi are a subset of its neighbours in G, hence it is also an
H-vertex inGi; similarly, if v ∈ S is a U-vertex inG, then the possible introduction of dummy vertices also guarantees
it is a U-vertex in Gi. We only need to consider vertices from the set V (G)− S in G and V (Ci) in Gi.

The proof is now trivial since the neighbours of a vertex v ∈ V (Ci) are either themselves in Ci, or are members
of S and therefore have their statuses fixed as either U or H; hence the happiness of v has no effect on the happiness
of any vertex outside of Ci.

Finally, the subtraction of (l− 1)H(S) is necessary to ensure that H-vertices in S are only counted once when the
subgraphs are combined to form G.

6

U

U

U

U

U

US

G1

H(G) = H(G1) + H(G2) + H(G3) – (3 – 1)H(S)
= 2 + 4 + 2 – 2 = 6

(a) (b)

(c)

H

U

U

U

U

U

U

H

U

U

U

U

U

H

U

U

U

U

U

H

* *

G2 G3

H(G1) = 2

U

U

U

U

U

U

H

U

U

H

U

U

U

U

U

H

U

U

H

U

U

U

U

U

H

H H

H

* *

H(G2) = 4 H(G3) = 2

U

U

U

U

U

H

H H

H

U

U

U

H

U

US

(d)

H

G

Figure 2: Example of how a graph G can be subdivided using an H-U separating set S. Additional vertices that occur
during the creation of G1 and G2 are marked by asterisks.

An immediate corollary of Theorem 6 is that
∑l

i=1H(Gi)
∗−(l−1)H(S) = H(G)∗. That is, if optimum solutions

can be found for each subgraph Gi, then the merged solution for G will also be optimum. If we are lucky, some of the
extracted subgraphs Gi might also turn out to be polynomially solvable, such as when col(Gi) ≤ 2, or when Gi is a
tree.

The problem of identifying separating sets in graphs is readily solvable by various polynomial-time algorithms
(e.g., [11]), and it only takes the addition of a simple checking step to determine whether each separating set also
comprises just H- and U-vertices. In practice, if a graph contains no H-U separating set, it would also be possible to
colour some free vertices to help produce one; however, if suboptimal choices are made in these assignments, this will
also prohibit the final merged solution from being optimum.

5 Experimental Analysis
In this section we now conduct an empirical analysis of the MHV problem. In particular, we use an IP formulation
together with the GREEDY-MHV and GROWTH-MHV algorithms to identify features that make instances of this
problem difficult to solve. In addition, Section 5.4 also proposes a CMSA algorithm for tackling larger instances of
this problem. All experiments reported here were performed on single-threaded 2.80 GHz processors using 5 GB
RAM. Copies of our source code and problem instance generator can be found at [1, 2].

5.1 Set-up
For our experiments both the GREEDY-MHV and GROWTH-MHV algorithms were implemented in C++. In the
case of GROWTH-MHV, when multiple vertices were available for selection in a particular step, ties were broken by
selecting the vertex with the highest degree. This tended to give shorter run times because, for Steps 1 and 2, more
neighbouring vertices would be coloured, resulting in fewer iterations of the overall algorithm.

Our IP method is based on the following formulation, which we implemented using Gurobi Optimiser, Version
7.5.1. For each vertex vi ∈ V we define integer variables xi = {1, . . . , k} and binary variables yi. The variable yi is
then equal to one if and only if vertex vi is unhappy. The model is now:

maximise n−
n∑

i=1

yi (10)

subject to:

xi = c(vi) ∀vi ∈ V ′ (11)

yi ≥
|xi − xj |

n
∀vj ∈ Γ(vi),∀vi ∈ V. (12)

7

Here, Constraint (11) assigns all of the precolourings, while Constraint (12) sets yi = 1 if and only if vertex vi is
unhappy. The objective function maximises the number of happy vertices.

In initial stages of our research, we also looked at a second, less compact, IP formulation which used binary
variables xij (where xij = 1 if and only if vertex vi was assigned to colour j) and variables yi ∈ R+ (which equalled
one if and only if vertex vi was unhappy). This was due to the following model.

maximise n−
n∑

i=1

yi (13)

subject to:

xij = 1 ∀vi ∈ V ′ : c(vi) = j (14)
k∑

j=1

xij = 1 ∀vi ∈ V (15)

yi ≥ |xjk − xik| ∀vj ∈ Γ(vi),∀vi ∈ V. (16)

Here Constraint (14) specifies the precolourings, Constraint (15) ensures that only one colour is assigned to a vertex,
and Constraint (16) sets yi = 1 if and only if vi is unhappy. For a small number of problem instances we found that this
second model actually featured shorter run times than the first, though these patterns were not particularly clear. The
second model was also seen to be far less reliable, with Gurobi often not producing an integer solution or completing
its presolve routines within the imposed time limits (given below). All results in this paper therefore relate to the first
model only.

For our trials, two types of problem instance were considered: random graphs and scale-free graphs. Random
graphs are produced by starting with a set of n isolated vertices and then adding edges between each pair of vertices
independently with a fixed probability p. This leads to a graph with approximately

(
n
2

)
p edges and a binomial-shaped

degree distribution with mean (n− 1)p and variance (n− 1)p(1− p).
In contrast to the unbiased method of random graph generation, scale-free graphs are based around the real-world

idea of “preferential attachment” in that, when a vertex is added to a graph, it is more likely to be made adjacent
to existing vertices that have high degrees. Scale-free graphs are therefore those whose degree distributions follow a
power law, in which a small number of “hub” vertices usually feature disproportionately high degrees compared to the
remaining vertices. Scale free graphs are known to model various real-work networks such as the World Wide Web,
social networks, and the citation networks of academic papers [6].

In our experiments scale-free graphs were produced using the Barabási-Albert method [6], using a parameter
q ∈ {0, 1, . . . , n}. In our case we start with a complete graph G = (V,E) = Kq , comprising q vertices and

(
q
2

)
edges.

In each step a new vertex v is then added to G together with q edges that connect v to vertices already in G. This is
done via a series of q roulette-wheel trials where, in each case, the probability P (u, v) of adding the edge {u, v} to E
is calculated

P (u, v) =

deg(u)∑

w∈(V−Γ(v)) deg(w)
if {u, v} /∈ E

0 otherwise.
(17)

Here, (V − Γ(v)) denotes the set of vertices in G that are not yet adjacent to v. Vertices are added in this way until a
graph with n vertices and m =

(
q
2

)
+ q(n− q) edges is formed. According to this method, a setting of q = 0 gives an

empty graph on n vertices, q = 1 leads to graphs with no cycles (trees), and q = n − 1 or q = n gives the complete
graph Kn.

Finally, upon generation of a random or scale-free graph, k colours are assigned to a user-specified proportion of
randomly chosen vertices, ensuring that each colour is used at least once. Note that we do not consider the subdivision
of problems in our experiments here because we have found that the necessary H-U separating sets do not seem to
naturally arise in graphs generated using these methods. They may occur more frequently with more targeted choices
of precoloured vertices and/or using different graph topologies, however.

5.2 Identifying Hard Problems
To identify where difficult-to-solve instances of the MHV problem lie, graphs of n = 1000 vertices were produced
using values of k ∈ {10, 50, 100, 250}. A large number of different settings for the proportion of precoloured vertices
and graph density were then considered and, for each parameter combination, twenty separate instances were produced
for both random and scale-free graphs. This resulted in more than 72, 000 problem instances in total. Our IP method
was then executed on each of these graphs using a maximum run-time of 600 seconds. Note that our IP method was
able to produce at least one integer solution for all of the graphs considered, but does not necessarily prove optimality.

8

 0.25
 0.5

 0.75
 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0

 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0

 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0

 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

 0.25
 0.5

 0.75
 0

 0.25

 0.5

 0.75

 1

 0

 200

 400

 600

 800

 1000

Precoloured
Density

H
(G

)

Figure 3: Number of happy vertices, H(G), achieved by our IP method on problem instances with various proportions
of precoloured vertices and graph densities. In order, these figures show the results for random graphs using k =
10, 50, 100 and 250, and then scale-free graphs using k = 10, 50, 100 and 250.

9

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

 0.5

 1

 0 0.5 1

P
re

co
lo

ur
ed

Density

Figure 4: Dark grey areas indicate graphs where our IP method was not able to produce provably optimal solutions
in all cases; light grey areas indicate graphs for which H(G)∗ = 0; and areas to the right of the dotted line indicate
graphs for which our generated H̄(G) = H(G)∗. The top row shows random graphs, the bottom scale-free graphs, for
k = 10, 50, 100 and 250 respectively. All points are calculated from twenty graphs produced at that location.

Our first set of figures uses the solutions produced by our IP method to examine how the number of happy vertices
available in a problem instance alters for different graph densities and proportions of precoloured vertices. Figure 3
shows this for all four values of k using both random and scale-free graphs. Note that lower values are not present in
the “precoloured” axes of k = 100 and k = 250 since, according to Definition 2, in this problem we are not permitted
to have fewer precoloured vertices than available colours.

Figure 3 demonstrates that, for the majority of graphs, our IP method produces solutions that have no happy
vertices. This finding is fairly obvious because in relatively dense graphs, vertices tend to have high degrees and are
thus more likely to be adjacent to vertices of different colours. Similarly, when the proportion of precoloured vertices
is high, this increases the chances of each free vertex being adjacent to at least two different colours, also ensuring that
it cannot be happy. When happy vertices do exist, we also see that their numbers fall as k is increased. Again, this is
fairly obvious when we consider that, with more colours, each vertex has a higher chance of being adjacent to two or
more different colours, making it unhappy. As shown, these results are consistent across both random and scale-free
graphs.

Of course, with our imposed time limit of 600 seconds the solutions produced by our IP method will not always
be optimum, so we now consider the effects that different graph types have on the observed difficulty of a problem.
These results are summarised in Figure 4 where we see that our IP method is only unable to solve these problems to
optimality when the density is low, and/or the proportion of precoloured vertices is low. We also see that these patterns
are very similar for random and scale-free graphs, and for different values of k.

Like Figure 3, Figure 4 also indicates the large number of graphs that feature no happy vertices (H(G)∗ = 0).
This fact was confirmed by our method of upper bound generation from Section 3 (which returned H̄(G) = 0) and by
our IP method, although the latter could sometimes take a few minutes to determine this, while the former was almost
instantaneous. The figures also show where our upper bound from Section 3 has proved equal to the optimum solutions
returned by our IP method, which includes some graphs for which H(G)∗ > 0. We generally found, however, that this
upper bound became less accurate for graphs with lower densities and lower proportions of precoloured vertices.

In Figure 5, we now focus more on low density graphs and examine the success rates and the CPU times required
by our IP method. The success rates, indicated by the shading in the figure, show the proportion of runs where the
algorithm was able to find the provably optimal solution within the 600 second time limit. The CPU time then indicates
the average number of seconds required to find the optimum solution (unsuccessful runs are not considered in these
averages).

The charts in Figure 5 confirm what we saw in Figure 4: that the most difficult problem instances are those with low
densities and/or few precoloured vertices. For random graphs, these effects are fairly consistent, with denser graphs
and/or increased numbers of precoloured vertices increasing the algorithm’s success rate and reducing its required run
times. Similar patterns also occur with the scale-free graphs with the notable exception of the least dense graphs. This
is indicated in the figures by the very thin white strip running parallel to the “precoloured” axes, and the corresponding
dips in CPU time. These particular graphs were generated using q = 1 (Section 5.1), resulting in trees with density
(
(
q
2

)
+ q(n− q))/

(
n
2

)
= 0.002. As noted in Section 1, it is known that the MHV problem is polynomially solvable on

trees [4], and it seems here that our IP method is also able to consistently solve these problems to optimality, though
the required run time may be significantly higher than more specialised algorithms.

10

 0.25
 0.5

 0.75 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75
 0

 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75
 0

 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75
 0

 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25
 0.5

 0.75
 0

 0.02
 0.04

 0.06
 0.08

 0.1

 0

 200

 400

 600

Precoloured
Density

C
P

U
 ti

m
e

(s
)

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5: Success rates (shaded) and run times of graphs for various proportions of precoloured vertices and graph
densities. In order, these figures show the results for random graphs using k = 10, 50, 100 and 250, and then scale-free
graphs using k = 10, 50, 100 and 250.

11

−250

−200

−150

−100

−50

 0

 50

 100

 150

 200

 250

 300

 0.25 0.5 0.75 1

D
iff

er
en

ce
 in

 H
(G

)

Precoloured

0.005
0.025

0.05

−250

−200

−150

−100

−50

 0

 50

 100

 150

 200

 250

 300

 0.25 0.5 0.75 1

D
iff

er
en

ce
 in

 H
(G

)

Precoloured

0.002 (trees)
0.005
0.025

0.05

Figure 6: Comparison of the GREEDY-MHV and GROWTH-MHV algorithms for various densities and proportions
of precoloured vertices, using random k = 10 graphs (left) and scale-free k = 50 graphs (right). Vertical axes are
calculated as the H(G) value returned from GREEDY-MHV minus the H(G) value from GROWTH-MHV, averaged
across 20 graphs. The unshaded area therefore indicates where GREEDY-MHV is superior on average, and the shaded
area where GROWTH-MHV is superior.

5.3 Constructive Algorithm Comparison
We now consider the performance of the two constructive algorithms from Section 2. Figure 6 compares the number
of happy vertices achieved by the two methods using n = 1000. For both random and scale-free graphs we see that the
very basic GREEDY-MHV algorithm returns superior solutions when the number of precoloured vertices is low, and
that these effects increase for sparser graphs. This stands to reason because under these conditions graphs will contain
many LF-vertices, which are guaranteed to be happy in solutions produced by GREEDY-MHV. One notable exception
to these patterns is shown in Figure 6 (right) for density 0.002. These graphs are scale-free trees, generated using
q = 1. As a result, they contain many leaf vertices and only a small number high-degree “hub” vertices. Whenever a
leaf vertex v is adjacent to a precoloured vertex in such graphs, colouring v with the same colour as its neighbour will
necessarily make v happy. This approach is followed by GROWTH-MHV, but not by GREEDY-MHV, reducing the
quality of its returned solutions.

We also compared the results of the two constructive algorithms against those of our IP method. For random
graphs we found that GREEDY-MHV was able to produce superior solutions in approximately one quarter of trials
when both graph density and the proportion of precoloured vertices was very low (values less than 0.03 and 0.25
respectively). Similar results were also observed with scale-free graphs, again with the exception of scale-free trees
for the reasons noted above. In all other cases, the average number of happy vertices in solutions produced by our IP
method was always equal or superior to those produced by GREEDY-MHV and GROWTH-MHV. Note, however, that
the constructive algorithms are still very useful because they feature very low run times (for n = 1000, GREEDY-MHV
completed in less than 0.01 seconds in all cases, while GROWTH-MHV completed in less than 1.2 seconds). They can,
therefore, be used for quickly calculating lower bounds on H(G), which might then form an additional constraint or
starting solution for the IP method.

5.4 Scaling-up Issues and a Metaheuristic Approach
In this section we examine the influence that graph size has on the performance of our algorithms. As we shall see,
our IP method experiences difficulties as the number of vertices n is increased; consequently, we will also propose an
alternative metaheuristic algorithm that attempts to resolve some of these issues.

Our alternative algorithm is based on the Construct, Merge, Solve & Adapt (CMSA) methodology of Blum et al. [8].
The basic idea of CMSA is to consider the set C of all possible components that can be used for constructing candidate
solutions. A single candidate solution S is then defined as a subset of these solution components in which the problem-
specific constraints are also satisfied. During a run of CMSA, a subset of these components C ′ ⊆ C is maintained,
and an exact method is employed to produce candidate solutions that only use components currently residing in C ′.
The idea is that solving a problem with respect to C ′ requires less computational effort and, if the correct contents of
C ′ are identified, high-quality solutions to the overall problem can be established more efficiently.

The pseudocode in Figure 7 describes our application of the CMSA method. The notation used here is chosen
to be consistent with that used in [8]. For the MHV problem, the complete set of solution components is defined as
C = V × {1, . . . , k}: that is, each component is a vertex/colour pair interpreted as an assignment of the vertex to the
colour. A valid solution is then a subset of C in which each vertex is assigned to exactly one colour and where all

12

CMSA (agemax, na)
(1) C ′ ← ∅
(2) agec ← 0, ∀c ∈ C
(3) Sbsf ← GENERATE-HEURISTIC-SOLUTION
(4) while (time limit not exceeded) do
(5) for i← 1 to na do
(6) S ← GENERATE-SOLUTION(Sbsf)
(7) for all c ∈ S and c /∈ C ′ do
(8) agec ← 0
(9) C ′ ← C ′ ∪ {c}

(10) S′opt ← APPLY-EXACT-SOLVER(C ′)
(11) if S′opt is better than Sbsf then
(12) Sbsf ← S′opt
(13) ADAPT(C ′, S′opt, agemax)
(14) return Sbsf

Figure 7: Pseudocode of the CMSA algorithm for the MHV problem.

the precolourings in the problem instance are obeyed. For example, the solution shown in Figure 1 can be written as:
{(v1, 1), (v2, 1), (v3, 1), (v4, 1), (v5, 2), . . . , (v8, 2)}

The CMSA algorithm is initialised in Steps (1) to (3) of the pseudocode. Here, the “ages” (explained below) of all
components in C are set to zero, and the best-so-far solution Sbsf is generated. In our case Sbsf is found by executing
both the GREEDY-MHV and GROWTH-MHV algorithms and taking the best of the returned solutions. Steps (4) to
(13) then contain the main body of the algorithm. In each iteration na solutions are generated probabilistically using
the GENERATE-SOLUTION procedure and, if not already present, the components of these solutions are added to the
set C ′. In Step (10) an exact solver is then used to solve the problem with respect to C ′. In our case, we use the same IP
formulation as before (Equations (10) to (12)) with the added restriction that each decision variable xi can only assume
values corresponding to the entries present in C ′. Note that if C ′ = C then an application of APPLY-EXACT-SOLVER
is equivalent to our original IP method. Finally, upon completion of this step the best-so-far solution is updated (if
appropriate) and the contents of C ′ are updated using the ADAPT procedure.

As indicated in the pseudocode, the intention of the GENERATE-SOLUTION procedure in Step (6) is to produce a
solution S whose components can be added to the setC ′. In our case this is achieved using Sbsf as a guide. Specifically,
to produce S each vertex v ∈ V is considered in turn and, if it is precoloured or has a degree of zero, it is automatically
assigned to the same colour as the corresponding vertex in Sbsf; otherwise, a colour j ∈ {1, . . . , k} is selected randomly
for v according to the probability:

P (v, j) =
φ(v, j)

deg(v)
, (18)

where φ(v, j) gives the number of v’s neighbours that are assigned to colour j in Sbsf. This probability function
encourages vertices in S to assume colours that match the colour of their neighbours in Sbsf, but also allows new
assignments to be made, therefore creating new components that can be added to C ′.

Finally, the ADAPT procedure in Step (13) is used to periodically remove certain elements from C ′. In our case,
and as recommended in [8], this is achieved by first incrementing the age of all components in C ′ (i.e., agec ←
agec + 1, ∀c ∈ C ′), then setting the age of all components used in S′opt to zero, and then removing any components
from C ′ whose ages exceed the user-defined parameter agemax. This process prevents S′ from becoming too large, but
also encourages favourable components to remain in C ′ for subsequent cycles of the CMSA algorithm.

Table 1 now compares the performance of the constructive, IP and CMSA methods on a range of different problem
sizes. In all cases random graphs were generated using values of p = 5/(n− 1), giving average vertex degrees of five,
and 10% of the vertices were precoloured.2 These can be considered “difficult-to-solve” problem instances according
to our earlier results. Values of k ∈ {10, 50} were also used, and twenty different graphs were generated in each case.
For the IP and CMSA algorithms we used an extended run time of 3,600 seconds. For CMSA a maximum of 600
seconds was also permitted for each application of the exact solver, and parameter settings of agemax = 3 and na = 10
were used. These choices were made after preliminary experimentation.

The results in Table 1 indicate that, for these instances, around 55–60% of vertices can be happy. We also see that
the IP method returns superior or equivalent results only for the smaller problem instances, with CMSA producing
the best results for the remainder. Indeed the success rates for the IP method were only seen to be non-zero in just

2Recall from Section 5.1 that, for random graphs, p gives the probability of two vertices being adjacent.

13

Upper Bounds (Mean ± SD) H(G) (Mean ± SD)a

n H̄(G) UBb Constructivec IP Method CMSA
k = 10 250 74.040 ± 2.1 60.760 ± 2.3 60.720 ± 2.4 60.760 ± 2.3 60.740 ± 2.3

500 74.810 ± 1.4 63.050 ± 1.8 60.860 ± 2.5 60.890 ± 2.4 60.890 ± 2.4
750 74.987 ± 0.9 65.027 ± 1.6 60.253 ± 1.3 60.287 ± 1.3 60.287 ± 1.3

1000 75.000 ± 1.0 65.550 ± 1.1 59.780 ± 1.2 59.860 ± 1.2 59.860 ± 1.2
2000 74.950 ± 0.9 66.780 ± 1.5 59.685 ± 1.1 59.698 ± 1.1 59.720 ± 1.1
3000 74.998 ± 0.7 67.018 ± 1.0 59.518 ± 0.7 59.540 ± 0.7 59.553 ± 0.7
4000 75.046 ± 0.6 70.720 ± 1.0 59.261 ± 0.8 59.053 ± 0.8 59.296 ± 0.7*
5000 74.886 ± 0.4 70.465 ± 1.0 58.928 ± 0.6 58.698 ± 0.6 58.969 ± 0.6*
7500 74.848 ± 0.4 70.723 ± 0.8 58.847 ± 0.6 58.680 ± 0.6 58.885 ± 0.6*

10000 74.080 ± 0.3 71.891 ± 6.2 57.918 ± 0.5 57.769 ± 0.6 57.929 ± 0.5*
k = 50 500 74.310 ± 1.4 63.380 ± 2.4 56.180 ± 2.3 56.260 ± 2.3 56.250 ± 2.3

750 74.533 ± 1.0 64.833 ± 1.7 56.780 ± 1.6 56.827 ± 1.6 56.827 ± 1.6
1000 74.575 ± 1.0 64.955 ± 1.3 56.515 ± 1.1 56.585 ± 1.1 56.585 ± 1.1
2000 74.453 ± 0.9 65.990 ± 1.4 56.358 ± 1.1 56.385 ± 1.1 56.413 ± 1.1*
3000 74.515 ± 0.7 66.190 ± 1.0 56.337 ± 0.8 56.350 ± 0.8 56.392 ± 0.7
4000 74.583 ± 0.6 67.871 ± 1.5 56.200 ± 0.7 56.001 ± 0.8 56.253 ± 0.7*
5000 74.405 ± 0.4 69.014 ± 0.9 55.869 ± 0.7 55.808 ± 0.7 55.930 ± 0.7*
7500 74.341 ± 0.4 69.434 ± 0.7 55.911 ± 0.6 55.653 ± 0.5 55.959 ± 0.6*

10000 73.579 ± 0.3 69.851 ± 1.7 54.909 ± 0.4 54.760 ± 0.5 54.918 ± 0.4*

aAsterisks indicate a significant difference between the best two methods at the 0.1% level according to a Wilcoxon signed rank test.
bUpper bound returned by the IP method within the 3,600 second time limit.
cBest solution found in runs with both GREEDY-MHV and GROWTH-MHV.

Table 1: Results achieved by the constructive, IP, and CMSA methods using random graphs with average degrees of
five and 10% precoloured vertices. All figures are the mean and standard deviation from runs across twenty problem
instances, expressed as percentages on the number of vertices n.

two classes of graph;3 consequently, we are not able to definitively state the optimal number of happy vertices for
the remaining instances at this point. Interestingly, for instances with 4,000 or more vertices, Table 1 indicates that
the constructive algorithms also produce better solutions than the IP method. This further highlights the IP method’s
difficulties with these large problem instances. That said, the upper bounds returned by the IP solver at the end of
execution are still more accurate than the bound of H̄(G) (Section 3.2) with these instances.

6 Conclusions and Further Work
This paper has analysed a number of features of the maximum happy vertices (MHV) problem, including methods for
generating bounds and for breaking up problems. We have demonstrated empirically that difficult-to-solve problems
only really occur when graph density and/or the proportion of precoloured vertices is low, which results in graphs with
higher numbers of potentially happy vertices. These patterns have been observed to be quite consistent across different
values of k and for both random and scale-free topologies.

Although our IP method is effective at solving many instances to optimality, it also suffers from scaling issues. As
a result, a CMSA approach has also been suggested that achieves significantly better performance with larger graphs.
We anticipate that other approaches—particularly bespoke metaheuristics or improved IP formulations—will show
further promise in this regard.

One of the general difficulties of identifying polynomially solvable instances of the MHV problem is that, for
any particular graph topology, various different combinations of vertices can be precoloured, each of which will lead
to a differently structured problem instance. This is in contrast to the more well-known (vertex) graph colouring
problem, where results are known for many different graph types [12]. To illustrate the effects that different choices
of precoloured vertices can have on a problem, a small number of additional experiments were conducted on twenty
scale-free graphs generated using n = 1000 and q = 4. In the first set of trials, the 5% of vertices with the highest
degrees (the “hubs”) were precoloured; in the second set, the 5% of lowest-degree vertices were precoloured. For
k = 10, our IP method was not able to solve any of these instances to optimality; however, when the high-degree
vertices were precoloured, approximate solutions with an average of just 226.4 happy vertices resulted. In contrast,
for the second set this rose to 818.1 happy vertices. For k = 50 the corresponding figures were 191.3 and 789.5 happy
vertices. Clearly then, even with the same graphs, the choice of precoloured vertices can have a large effect on the
types of solution that are available.

In many real world situations, we may also choose to consider various generalisations of the MHV problem.
For example, we can easily modify Definition 1 to say that a vertex v is happy if and only if min(deg(v), l) of its

3Specifically: n = 250, k = 10 (where all instances were solved to optimality in an average of 69 seconds) and n = 500, k = 10 (where 20%
of instances were solved to optimality in an average of 2,328 seconds).

14

neighbours are assigned to the same colour, where l is a parameter specified as part of the problem. For l ≥ ∆ we get
the MHV problem itself, whereas l = 0 leads to a trivial problem (all solutions have n happy vertices). However, we
are not currently aware of other values for l that are polynomially solvable. If we consider l = 1, for example, it is
clear that if we have a u, v-path whose vertices are all assigned to the same colour, then all vertices in this path will be
happy. An appropriate algorithm might therefore exploit this feature by acting as follows.

1. Let v be a vertex assigned to colour i, and let G′ be the subgraph induced by vertices in G that are coloured with
i, or that are uncoloured.

2. Starting from v, identify a spanning tree T of G′ and assign all uncoloured vertices in T to colour i.
3. If G contains any remaining uncoloured vertices, return to Step 1; otherwise end.

Other interpretations of the MHV problem are also plausible, including those where we might wish to balance the
number of vertices per-colour; decentralised problems, where individual vertices are only aware of colours assigned
to a subset of the vertices (such as their neighbouring vertices); and problems where all coloured vertices need to be
happy, but where we allow other vertices to remain uncoloured in a solution. Each of these variants is worthy of further
research.

Acknowledgements
This research was partially supported by the Cardiff University International Collaboration Seedcorn Fund. It was also
supported in part by the Monash eResearch Centre and eSolutions-Research support services through the use of the
MonARCH HPC cluster. The authors are also grateful for the comments of the reviewers, which helped to improve
the paper.

References
[1] Algorithm source code. http://www.rhydlewis.eu/resources/happyalgs.zip. Accessed 2018-11-14.

[2] Problem instance generator. http://www.rhydlewis.eu/resources/happygen.zip. Accessed 2018-11-14.

[3] A. Agrawal. On the parameterized complexity of happy vertex coloring. In L. Brankovic, J. Ryan, and W. Smyth,
editors, Combinatorial Algorithms. IWOCA 2017, volume 10765 of Lecture Notes in Computer Science, pages
103–115. Springer, Cham., 2018.

[4] N. Aravind, S. Kalyanasundaram, and A. Kare. Linear time algorithms for happy vertex coloring problems for
trees. In V. Mäkinen, S. Puglisi, and L. Salmela, editors, Combinatorial Algorithms: IWOCA 2016, volume 9843
of Lecture Notes in Computer Science, pages 281–292. Springer Cham., 2016.

[5] N. Aravind, S. Kalyanasundaram, A. Swami Kare, and J. Lauri. Algorithms and hardness results for happy
coloring problems. CoRR, abs/1705.08282, 2017.

[6] A. Barabási. Network Science. Cambridge University Press, 2016.

[7] M. Bellows and J. Luc Peterson. Finding an optimal seating chart. Annals of Improbable Research, 2012.

[8] C. Blum, P. Pinacho, and J. López-Ibáñez, M. amd Lozano. Construct, merge, solve & adapt a new general
algorithm for combinatorial optimization. Computers and Operations Research, 68:75–88, 2016.

[9] M. Carter, G. Laporte, and S. Lee. Examination timetabling: Algorithmic strategies and applications. Journal of
the Operational Research Society, 47:373–383, 1996.

[10] B. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Probability and Statistics. John Wiley & Sons,
5th edition, 2011.

[11] A. Kanevsky. Finding all minimum-size separating vertex sets in a graph. Networks, 23:533–541, 1993.

[12] R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer International Publishing, 2016.

[13] R. Lewis and F. Carroll. Creating seating plans: A practical application. Journal of the Operational Research
Society, 67(11):1353–1362, 2016.

[14] R. Lewis and J. Thompson. Analysing the effects of solution space connectivity with an effective metaheuristic
for the course timetabling problem. European Journal of Operational Research, 240:637–648, 2015.

15

http://www.rhydlewis.eu/resources/happyalgs.zip
http://www.rhydlewis.eu/resources/happygen.zip

[15] A. Li and P. Zhang. Algorithmic aspects of homophyly of networks. Theoretical Computer Science, 593:117–
131, 2015.

[16] B. McCollum, A. Schaerf, B.. Paechter, P. McMullan, R. Lewis, A. Parkes, L. Di Gaspero, R. Qu, and E. Burke.
Setting the research agenda in automated timetabling: The second international timetabling competition. IN-
FORMS Journal on Computing, 22(1):120–130, 2010.

[17] N. Misra and I. Vinod Reddy. The parameterized complexity of happy colorings. In L. Brankovic, J. Ryan,
and W. Smyth, editors, Combinatorial Algorithms. IWOCA 2017, volume 10765 of Lecture Notes in Computer
Science, pages 142–153. Springer, Cham., 2018.

[18] P. Zhang, T. Jiang, and A. Li. Improved approximation algorithms for the maximum happy vertices and edges
problems. In D. Xu, D. Du, and D. Du, editors, Computing and Combinatorics: 21st International Conference,
COCOON 2015, Beijing, China, pages 159–170. Springer, 2015.

16

	Introduction
	Constructive Algorithms
	Bounds for the MHV Problem
	Lower Bounds
	Upper Bounds

	Problem Subdivision
	Experimental Analysis
	Set-up
	Identifying Hard Problems
	Constructive Algorithm Comparison
	Scaling-up Issues and a Metaheuristic Approach

	Conclusions and Further Work

