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Abstract

In this paper we consider a combinatorial optimisation problem that takes as input a graph in which
some of the vertices have been preassigned to colours. The aim is to then identify the largest induced
subgraph in which all remaining vertices are able to assume the same colour as all of their neighbours. This
problem shares similarities with the graph colouring problem, vertex cut problems, and the maximum
happy vertices problem. It is NP-hard in general. In this paper we derive a number of upper and lower
bounds and also show how certain problem instances can be broken up into smaller subproblems. We
also propose one exact and two heuristic algorithms for this problem and use these to investigate the
factors that make some problem instances more difficult to solve than others.

Keywords: Graph Colouring; Combinatorial Optimisation; Vertex Cut Sets; Tabu Search.

1 Introduction

Given a simple graph G = (V,E), the well-known graph colouring problem seeks an assignment of colours
to vertices such that pairs of adjacent vertices are allocated to different colours, while the number of colours
being used across the graph is minimised. In operational research and related fields, graph colouring is
often used to model situations where a set of conflicting entities such as tasks, events, or people need to be
efficiently allocated to a limited set of resources. Examples include school and university timetabling, sports
scheduling, frequency assignment, compiler register allocation, and the construction of seating plans [20].

In the past five years or so, interest has also been growing in a different type of graph colouring problem
in which related vertices are required to be assigned to the same colour as one another. This can have
uses in areas such as social network analysis, where a suitable assignment of colours can help to identify
communities of closely related individuals [11], or in cluster analysis, where a set of objects (vertices) need
to be partitioned such that similar objects are assigned to same group (colour) as one another [13].

In a 2015 paper, Li and Zhang [23] introduced a related concept known as vertex “happiness”, defined
as follows:

Definition 1. Let G = (V,E) be a simple graph, and let c : V → {1, . . . , k} be a colouring of all vertices in
G. A vertex v ∈ V is happy if c(v) = c(u) for all u ∈ Γ(v); else it is unhappy.

Here, Γ(v) denotes the set of neighbours of a vertex v ∈ V ; hence, in a graph in which all vertices have been
coloured, a vertex is happy if and only if it is assigned to the same colour as all of its adjacent vertices.

In their research, Li and Zhang consider graphs in which a subset of the vertices have been precoloured.
They then introduce the so-called maximum happy vertices (MHV) problem, which involves allocating colours
to the remaining vertices such that the number of happy vertices in the graph is maximised. A practical
application of this problem might occur when we have a set of people, some of whom have been preassigned
to groups (colours), and we want to assign the remaining people to these groups such that the number of
happy people is maximised. This could occur when choosing groups for a team building exercise or when
assigning guests to shared bedrooms at a hotel. Li and Zhang have shown that the MHV problem is NP-hard
in general, although it is polynomially solvable for graphs using fewer than three colours [23]. It is now known
that the problem is also polynomially solvable for acyclic graphs, but that it remains NP-hard for bipartite
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graphs and split graphs [4, 5]. Lewis et al. [22] have also developed a number of upper and lower bounds for
this problem, together with methods for breaking up problems into smaller sub-problems.

In this paper we take this research in a new direction by investigating a type of problem that is related to
the MHV problem. In this variant, which we call the maximum happy induced subgraph (MHIS) problem,
vertices are forbidden from being unhappy but, instead, can remain uncoloured in the graph. As a result, a
coloured vertex v is considered happy whenever all of its coloured neighbours have the same colour as v, as
opposed to all of its neighbours. The objective is to then maximise the number of coloured (and therefore
happy) vertices, which is equivalent to minimising the number of uncoloured vertices. In the next section
we define this problem, discuss its relationships to other combinatorial optimisation problems and list some
motivating examples. In Section 3 we then derive some upper and lower bounds and show how problem
instances can sometimes be broken up into smaller parts that can be tackled independently. Section 4 then
gives three algorithms for this problem, with results and analyses appearing in Section 5. Finally, Section 6
concludes the paper.

2 Problem Definition

Consider the following definition:

Definition 2. Let G = (V,E) be a simple graph with n vertices in which a subset of vertices V ′ ⊆ V have
been coloured by the function c : V ′ → {1, . . . , k}. A happy component in G is any connected component
C that (a) contains no coloured vertices, or (b) whose coloured vertices are all assigned to the same colour.
That is, C is happy if and only if |

⋃
v∈(V (C)∩V ′){c(v)}| ≤ 1, where V (C) is the set of vertices belonging to

component C.

It is easy to see that in any happy component C, all of the uncoloured vertices can be assigned to colours
so that they are happy. Specifically, if C contains no precoloured vertices, then all of its vertices can be
assigned to the same arbitrary colour; otherwise, all of its uncoloured vertices should be coloured with the
same colour as all of its coloured vertices. This brings us to our main problem definition:

Definition 3. Let G = (V,E) be a simple graph in which a subset of vertices V ′ ⊆ V have been precoloured
using the partial colouring function given in Definition 2. The Maximum Happy Induced Subgraph (MHIS)
problem involves extending c to another partial colouring c̃ : X → {1, . . . , k} (where V ′ ⊆ X ⊆ V ) such that:
(a) in the graph induced by X all vertices are happy, and (b) the cardinality of X is maximised.

Here, any vertex in G that is not precoloured in the initial problem instance (belonging to the set V −V ′)
is known as a “free vertex”. A feasible candidate solution is then any assignment of colours to a subset of
the free vertices such that constraint (a) in Definition 3 is satisfied. The optimal/maximum number of happy
vertices for G (i.e. the maximum possible size of X) is denoted by H(G)∗.

Note that in any feasible solution to this problem, paths between differently coloured vertices will always
contain at least one uncoloured vertex. This implies that in order for a problem instance to feature at least
one feasible solution, we cannot have any edges whose endpoints are precoloured differently. This also means
that the precoloured vertices in any feasible solution must be happy; hence, |V ′| ≤ H(G)∗ ≤ n. On the other
hand, problem instances can feature free vertices whose neighbours are precoloured to different colours. Such
vertices are known as “bridging” vertices. Bridging vertices can never be happy in a feasible MHIS solution,
and must therefore remain uncoloured (see also Section 3.1).

An useful way of representing a candidate solution to this problem is as a partition of the vertices
S = (S1, . . . , Sk)∪U , where each Si is the set of vertices assigned to colour i, and U is the set of uncoloured
free vertices. Here, each element v ∈ Si should either be a precoloured vertex for which c(v) = i, or a free
vertex. A feasible solution is then any solution in which the subgraph induced by each Si comprises one or
more happy components. The task is therefore to identify a feasible solution S that maximises the objective
function

f(S) =

k∑
i=1

|Si|, (1)

where f(S) gives the number of happy (coloured) vertices. This is equivalent to minimising the number of
unhappy (uncoloured) vertices |U |.

A small example of the MHIS problem is shown in Figure 1(a). Part (b) of this figure shows how the
removal of four free vertices in this graph results in the vertex subset X, whose induced subgraph comprises
four happy components, giving a feasible solution. This solution can also be written as S = (S1, . . . , Sk)∪U =
({v2, v3, v14}, {v5, v6, v13}, {v8, v9, v10, v11, v12, v16, v17})∪{v1, v4, v7, v15}, which has the objective function
value f(S) = 13. Finally, Part (c) shows how the colouring function c̃ : X → {1, . . . , k} is created by allocating
appropriate colours to the free vertices in each happy component, as described above.
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Figure 1: (a) An example MHIS problem instance with n = 17 vertices, |V ′| = 5 precoloured vertices, k = 3
colours, and two bridging vertices (v1 and v15); (b) an example solution in which four vertices (dashed) have
been removed, leaving four happy components; (c) the same solution as (b) with the remaining free vertices
coloured, giving thirteen happy vertices.

2.1 Relationship to Cutting Problems

Figure 1(b) helps to demonstrate how the MHIS problem can be viewed as the task of identifying an
appropriate vertex cut set in a graph. This allows parallels to be drawn with the task of finding minimum
node multi-way cuts (MNMCs) in a graph. In the MNMC problem we are given a simple graph G = (V,E)
in which V contains, as a subset, an independent set of k vertices known as the “terminals”. The problem
then involves finding the smallest subset of non-terminal vertices that, when removed from G, leaves each
terminal in a separate component. This problem is polynomially solvable when k = 2 because it is equivalent
to the maximum flow (minimum cut) problem. Garg et al. [16] have also stated, without proof, that the
problem is polynomially solvable for trees, though they also show that Vertex-Cover ∝ MNMC, proving
it to be NP-hard in general. Marx [24] has also shown that when the maximum size of the vertex cut set
is specified as part of the input, the MNMC problem is fixed parameter tractable; however, the associated
algorithms are still prohibitively expensive in practice.

In fact, the MHIS and MNMC problems can be shown to be equivalent. To transform the MNMC
problem into the MHIS problem, we simply need to allocate a different colour to each of the terminals,
giving k differently-precoloured vertices; similarly, the opposite conversion can be made by considering each
colour in turn, contracting all vertices of this colour into a single vertex, and then using these k contracted
vertices as the terminals. Results and algorithms stated for one of these problems are therefore applicable to
the other. Garg et al. [16] previously proposed an approximation algorithm for the MNMC problem based
on an LP-relaxation. This features an approximation ratio of 2− 2/k. Integer programming-based methods
are also described by Cornaz et al. [10].

2.2 Relationship to Graph k-Colouring

From a different perspective, we can also contrast the MHIS problem with the NP-hard partial graph k-
colouring problem [7, 20]. In graph k-colouring the aim is to partition the vertices of G into k independent
sets, whereas in the partial variant we are permitted to leave some vertices of the graph uncoloured. A
candidate solution to the latter can therefore be written as S = {S1, . . . , Sk} ∪ U , where each Si ∈ S is an
independent set containing the vertices to be coloured with colour i, and U is the set of uncoloured vertices.
The aim is to then identify the solution that minimises |U |. In contrast, for the MHIS problem we seek to
minimise |U | such that each Si ∈ S corresponds to one or more happy components, as noted earlier.

2.3 Application Areas

We now consider some application areas that help to motivate the study of the MHIS problem.

Communications Networks: Consider a communications network where precoloured vertices represent
end-users, free vertices represent routers, and edges join vertices that are physically connected. Now
suppose that we wish to install monitoring devices that allow us to capture data sent between differently
precoloured vertices (perhaps because they signify end-users who work for different agencies, or in
different countries). In a feasible solution to the MHIS problem, all paths between pairs of differently-
precoloured vertices will contain at least one uncoloured vertex; hence, an optimal solution will identify
the smallest number of routers onto which we can place monitoring devices [10].

Social Networking: In social networks vertices are used to represent people, with edges then representing
friendships between them. Now consider a situation where people need to be partitioned into groups
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(e.g., for a team-building exercise), but that some of the people have already been preassigned to
groups. Suppose further that people are “happy” only if they are assigned to a group containing their
only friends. An optimal solution to the corresponding MHIS problem will maximise the number of
happy people, with the remaining “unhappy” people not being assigned to any team.

Forest Root Systems: According to Simard et al. [26] the root systems of different trees in boreal forests
often link to form networks, allowing the relaying of stress signals and the exchange of resources. Now
imagine that we are interested in disconnecting a subset of trees, perhaps to stop the spread of disease,
but that we want to minimise the number of trees to be felled. These felled trees will correspond to
the uncoloured vertices in an optimal MHIS solution.

Stopping the Spread of Infection: Related to the previous example, an optimal solution to the MHIS
problem will also identify the minimum number of people in a social network that need to be removed
(quarantined) in order to stop an infection spreading to different predefined parts of the network (where
these “parts” are defined using different colours).

3 Bounds for the MHIS Problem

In this section we consider some upper and lower bounds on the number of happy vertices achievable in
different MHIS problem instances. We also introduce ways in which some problem instances can be broken
up into smaller subproblems.

3.1 Bridging Vertices

Recall that a “bridging vertex” is a vertex with at least two neighbours that are precoloured differently (such
as v1 in Figure 1(a)). It is obvious that bridging vertices must remain uncoloured in any feasible solution;
indeed, we can show the following:

Theorem 1. H(G)∗ = |V ′| if and only if all of G’s free vertices are bridging vertices.

Proof. Consider a graph with x bridging vertices. If |V −V ′| = x then all free vertices are bridging and must
remain uncoloured in a feasible solution. Hence only the precoloured vertices are happy, giving H(G)∗ = |V ′|.

On the other hand consider a graph with x bridging vertices and y ≥ 1 non-bridging free vertices. Now
take a free non-bridging vertex v and make it precoloured by assigning it to any colour not currently allocated
to one of its neighbours (at least k − 1 such colours will exist to do this). Since v is now precoloured (and
happy) this means H(G)∗ > x. Thus, if H(G)∗ = |V ′|, then all free vertices must be bridging.

When all free vertices in a graph are bridging, there is clearly nothing to optimise, and the corresponding
MHIS problem is trivial. We can also estimate the conditions under which these trivial instances will occur
using certain assumptions. Consider an MHIS problem instance G = (V,E) using k colours and assume
that the number of precoloured vertices |V ′| in this graph is a positive multiple of k. Also assume that
the precoloured vertices are chosen at random and assigned to random colours such that each colour class
contains exactly c̄ = |V ′|/k precoloured vertices. Hence, c̄ ∈ N. Now consider any free vertex v ∈ (V − V ′)
in this graph. If v is not a bridging vertex then any precoloured neighbours of v must have the same colour
as each other and the remaining neighbours must be free; hence, all neighbours of v belong to a set of size
c̄+ |V − V ′| − 1. The complement of this event is that v is a bridging vertex, hence:

P (v is a bridging vertex) = 1−

(
c̄+|V−V ′|−1

deg(v)

)(
n−1

deg(v)

) . (2)

The right term in this formula is derived from the hypergeometric distribution.
If we now assume the degrees of all vertices in G are equal to d̄ = 1

n

∑
v∈V deg(v), then this gives:

P (all free vertices are bridging vertices) =

(
1−

(c̄+|V−V ′|−1

d̄

)(
n−1
d̄

) )|V−V ′|

. (3)

The lines in Figure 2 illustrate the effects of this probability for differing values of n and k. The areas to
the right of the lines indicate the combinations of parameters—mean degree d̄ and proportion of precoloured
vertices |V ′|/n—that, with high confidence, result in problem instances where all free vertices are bridging.
We see that these areas occupy the majority of the figures, with only very low values of one or both of the
parameters leading to non-trivial problem instances. However, we must bear in mind that this model is based
on the assumptions outlined above and will become less accurate when the selection of precoloured vertices
is non-random or the variance across the vertex degrees is increased.
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Figure 2: Areas to the right of the curves indicate parameter combinations that, with ≥ 95% probability,
lead to problem instances where all free vertices are bridging vertices, giving H(G)∗ = |V ′|. The points in
the rightmost graph, which is a zoom-in of the middle graph, indicate the locations where our test instances
(Section 5) were generated.

3.2 Lower Bounds

Lower bounds on the optimal number of happy vertices can be found by considering the maximum vertex
degree in a graph ∆ = max(deg(v) : v ∈ V ). Recall that in this problem we do not allow any edges whose
endpoints are precoloured differently.

Lemma 1. If ∆ ≤ 1 then H(G)∗ = n.

Proof. Clearly, in such graphs each component will either be an isolated vertex or a clique of size two. Free
vertices belonging to cliques of size two should be assigned to the same colour as their neighbour. Isolated
free vertices can be assigned to any arbitrary colour in {1, . . . , k}. If such a process is followed then all
vertices will be happy, giving H(G)∗ = n.

We now consider graphs for which ∆ ≥ 2.

Theorem 2. If ∆ ≥ 2 then H(G)∗ ≥ max
(
|V ′|, n−

(
k−1
k |V

′|∆
))

Proof. According to this problem’s definition, all precoloured vertices are happy; consequently, at least |V ′|
vertices will always be happy in a feasible solution.

Now consider A ⊆ V ′ to be the largest subset of precoloured vertices that are assigned to the same colour
a ∈ {1, . . . , k}. Hence, |A| ≥ d 1

k |V
′|e and |V ′ −A| ≤ k−1

k |V
′|. Let N denote the set of free vertices that have

neighbours belonging to V ′ − A. The size of N is at most |V ′ − A|∆ (i.e. every neighbour in V ′ − A has
∆ distinct neighbours in N). In the worst case, every vertex in N will also have a neighbour belonging to
A, making it a bridging vertex (which cannot be happy); however, any remaining free vertices in the graph
(i.e., those belonging to (V − V ′ −N)) can be made happy by assigning them to colour a. Hence,

H(G)∗ ≥ n− |N | = n− (|V ′ −A|∆) ≥ n−
(
k − 1

k
|V ′|∆

)
. (4)

Note that when k = 1, all free vertices can be assigned to the same single colour, giving n happy vertices.
The bound of Theorem 2 is therefore tight for this case.

Theorem 2 can also be used for the following corollary concerning d-regular graphs:

Corollary 1. Let G be a d-regular graph. Then H(G)∗ ≥ max
(
|V ′|, n−

(
k−1
k d|V ′|

))
.

Proof. This is found by simply replacing ∆ with d in the proof of Theorem 2.

We now consider random graphs G belonging to the set G(n, p). Graphs in this set have n vertices, and
each pair of vertices u, v ∈ V is adjacent with a fixed probability p.

Theorem 3. Let G ∈ G(n, p) be a random graph. Then the expected number of happy vertices is greater than

n− (n− |V ′|)pd
|V ′|
k e.

Proof. Let A ⊆ V ′ be the largest subset of precoloured vertices that are assigned to the same colour a ∈
{1, . . . , k}. Now suppose we assign all vertices in the set (V − V ′) to colour a and then uncolour all free
vertices that have at least one neighbour in the set (V ′ −A). This means that all coloured vertices in G are

now happy. Observe that d |V
′|

k e ≤ |A| ≤ |V
′| − k + 1.
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Now let Xi be a binary variable set to 0 if vertex vi is adjacent to any vertex in the set (V ′ − A) and 1
otherwise. The expected number of free vertices that are not adjacent to vertices in the set (V ′ −A) will be
at least:

E[
∑

vi∈(V−V ′)

(Xi)] =
∑

vi∈(V−V ′)

(E[Xi])

=
∑

vi∈(V−V ′)

P (vi is not adjacent to any vertex in the set (V ′ −A))

≥
∑

vi∈(V−V ′)

(1− p|V
′−A|)

= (n− |V ′|)(1− p|V
′−A|)

≥ (n− |V ′|)(1− pd
|V ′|
k e). (5)

Thus the expected number of happy vertices is at least

|V ′|+ (n− |V ′|)(1− pd
|V ′|
k e) = |V ′|+ n(1− pd

|V ′|
k e)− |V ′|+ |V ′|pd

|V ′|
k e

= n(1− pd
|V ′|
k e) + |V ′|pd

|V ′|
k e

= n− (n− |V ′|)pd
|V ′|
k e (6)

as required.

3.3 Upper bounds

We can extend the ideas behind bridging vertices to also generate upper bounds on the number of happy
vertices in a graph. This is achieved using what we call unhappy paths.

Definition 4. Given a valid MHIS problem instance, an unhappy path is a simple path of length two or
more (edges), whose internal vertices are free, and whose terminal vertices u and v are precoloured differently
(c(u) 6= c(v)).

Example unhappy paths from Figure 1(a) include (v2, v3, v4, v5, v6) and (v6, v7, v8, v9), of lengths four and
three (edges) respectively.

Note that the presence of an unhappy path in a graph implies the necessary existence of uncoloured
vertices in a solution, since at least one of its internal vertices need to be removed to allow the terminal
vertices to exist in different happy components. Unhappy paths can therefore be used to generate an upper
bound H̄(G) on H(G)∗. A process for doing this is described in the following steps using a copy of G.
These steps involve first removing all bridging vertices from the graph, and then repeatedly identifying and
removing unhappy paths while keeping count of the minimum possible number of uncoloured vertices x.

1. Let x be the number of bridging vertices in G. Remove all of these bridging vertices from G and go to
Step 2.

2. Let P be an unhappy path in G. If no such path exists, go to Step 4; else go to Step 3.
3. Let u and v be the terminal vertices of the path P identified in Step 2. Remove all internal vertices in
P from G, add one to x, and return to Step 2.

4. The upper bound H̄(G) is set to n− x.

Note that, in Step 2, any arbitrary unhappy path can be chosen in G. In this paper we use a greedy strategy
of identifying and removing the shortest unhappy path. This is achieved by running breadth-first search from
each non-isolated precoloured vertex. This results in the smallest number of vertices being removed from the
current graph at each step. The intention is to allow the process to iterate for a larger number of cycles,
thereby increasing x and improving H̄(G). Other strategies might also be applied, however.

Further reasoning might also allow us to improve H̄(G) in some cases. For example, consider a clique
of free vertices in G that are each adjacent to a different precoloured vertex, and where these precoloured
vertices all have different colours to one another. Examples of such cliques are shown in Figure 3. Note that
if G contains one of these structures, then as soon as one of the free vertices in the clique is assigned to the
same colour as its precoloured neighbour, any remaining vertices in the clique will become bridging vertices,
meaning that they cannot be coloured in any feasible solution. In our method for generating upper bounds,
we might therefore choose to include an additional step between Steps 1 and 2 that identifies these structures

6



Figure 3: Example cliques of free vertices in a graph in which each vertex is also adjacent to a different
precoloured vertex, and where these precoloured vertices have different colours to one another. (Cliques of
size three (left), and four (right).)

B
B

(a)

*

*

(b)

(c) (d)

G G1 G2

f(S1) = 6 f(S2) = 9 f(S) = 6 + 9 – 1 – 1 = 13 

T

T

T

Figure 4: Example of how a graph G can be subdivided using a vertex cut set T that comprises only
precoloured vertices and bridging vertices (marked with a B). Here T contains one happy vertex (f(T ) = 1).
Also, δ = 1 dummy vertex (asterisked) has been created.

and, if the identified clique has l vertices, adds l− 1 to x before removing these vertices. Note, however, that
the task of identifying cliques in a graph is NP-hard in general, so this could add considerable expense to
the procedure. It is therefore not used here.

3.4 Problem Subdivision

In this section we show how instances of the MHIS problem might be broken up into smaller parts, allowing us
to tackle each part separately. Firstly, observe that if we have a disconnected graph G comprising multiple
components C1, . . . , Cl then the status of a vertex in one component has no effect on vertices in other
components. This means that if we compute feasible solutions for each component separately, then the
number of happy vertices in G is simply the sum of the number of happy vertices across all components. We
now extend this idea to connected graphs.

Let T ⊆ V be a vertex cut set in G comprising only precoloured vertices and bridging vertices (that
is, vertices whose statuses are fixed as coloured and uncoloured respectively), and let C1, . . . , Cl be the
components resulting from the removal of T . Now, for each Ci ∈ {C1, . . . , Cl}, let Gi be the subgraph
induced by the vertices of Ci and T . Finally, if Gi contains a vertex v ∈ T that was a bridging vertex in G
but is non-bridging in Gi, add additional dummy precoloured vertices and edges to Gi such that v is also
bridging.

An example of this process is shown in Figure 4. In Part (a) a suitable vertex cut set T is indicated. Part (b)
then shows the resultant subgraphs G1 and G2, together with an appropriate dummy vertex (asterisked).
Part (c) then shows example feasible solutions to these subgraphs. The final solution to the original graph
is formed by merging these solutions and deleting the dummy vertices, as shown in Part (d).

Theorem 4. Let G1, . . . , Gl be separate subgraphs constructed using an appropriate vertex cut set T , and
let δ be the total number of dummy precoloured vertices created. In addition, let Si be a feasible colouring
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(partition) of the vertices in Gi (for each i ∈ {1, . . . , k}), and let S be a full feasible solution formed by
merging S1, . . . ,Sl. Then

f(S) =

(
l∑

i=1

f(Si)

)
− (l − 1)f(T )− δ. (7)

Proof. Recall that a vertex is happy in a feasible solution if and only if it is coloured, else it is unhappy
(and uncoloured). It is sufficient to show that a non-dummy vertex v is coloured in Si if and only if it is
also coloured in S. Note that in each Gi, vertices originating from T must have the same status as their
counterparts in G. If v ∈ T is precoloured (and therefore happy) in G, then its set of neighbours in Gi are
a subset of its neighbours in G; hence it is also happy in Gi. Similarly, if v ∈ T is a bridging vertex in G,
then the possible introduction of appropriate precoloured dummy vertices also ensures that it is a bridging
vertex in Gi, and cannot therefore be coloured. We therefore now only need to consider vertices from the set
V (G)− T in G and V (Ci) in Gi.

The proof is now trivial, since the neighbours of a vertex v ∈ V (Ci) are either themselves in Ci, or are
vertices in T (whose statuses are fixed). Hence the status of v has no effect on the status of any vertex
outside of Ci.

Finally, the subtraction of (l− 1)f(T ) is necessary to ensure that coloured vertices in T are only counted
once when the subsolutions are combined to form S. Similarly, δ is subtracted to ensure that dummy vertices
are not counted in the final total.

An immediate corollary of Theorem 4 is that H(G)∗ =
(∑l

i=1H(Gi)
∗
)
− (l − 1)f(T ) − δ. That is, if

optimal solutions can be determined for each subgraph Gi, then the merged solution for G will also be
optimal. This could be useful, for example, if each subgraph Gi is seen to contain fewer than three colours,
as the overall problem could then be solved optimally in polynomial time.

4 Algorithms for the MHIS Problem

In this section we describe three different algorithms for the MHIS problem, one based on an integer pro-
gramming (IP) formulation (Section 4.2) and two on tabu search (Sections 4.3 and 4.4). As we shall see,
the IP method sometimes struggles with instances involving large numbers of vertices; our motivation for
choosing tabu search is to therefore establish methods that are fast and that also scale well.

In all cases, a preprocessing step is first carried out to try to impose additional precolourings on the graph.
Initial solutions are also produced using a specialised heuristic. These are described in the next subsection.

4.1 Preprocessing and Initial Solution Generation

For some MHIS problem instances it is possible to identify free vertices whose colours can be fixed, in effect
adding additional precoloured vertices to a graph. For instance, if all the neighbours of a free vertex v are
precoloured with colour j, then it is obvious that v should also assume colour j. A more generalised version
of this process is as follows.

Starting at a free vertex v, let S be the set of vertices that are reachable from v in the subgraph induced
by the free vertices of G. Now, using G consider the set of precoloured vertices that are adjacent to the
vertices of S ∪{v}. If all of these precoloured vertices have the same colour j, then all vertices in S ∪{v} can
also be coloured with j. Similarly, if none of the vertices in S ∪ {v} have a precoloured neighbour, then they
can all be assigned to the same arbitrary colour j ∈ {1, . . . , k}. Repeat this process until all free vertices of
G have been considered.

Obviously, fixing the colours of certain free vertices has the effect of reducing the size of the solution
space while not changing the value of H(G)∗. Note also that this process will determine the colours of all
free vertices in happy components; as a result, it will always achieve an optimal solution if H(G)∗ = n.

Our procedure for producing an initial feasible solution S = (S1, . . . , Sk)∪U (and therefore a lower bound
on the number of happy vertices) is as follows.

Given a problem instance G, take each component C1, . . . , Cl one by one. For each Ci, we then take each
colour j ∈ {1, . . . , k} in turn and colour all free vertices with j, providing that they do not have a neighbour
that is precoloured to something other than colour j. Our final solution for this component is formed using
the colour that maximises the number of coloured (happy) vertices under this process. An example for a
single component using the problem from Figure 1(a) is shown in Figure 5. Note that this method is exact
when H(G)∗ = |V ′| (as none of the free vertices will be coloured) and when H(G)∗ = n (all free vertices will
be in happy components and will therefore be coloured).
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Figure 5: Example initial solutions for the problem shown in Figure 1 using colour j = 1 (light grey, left),
j = 2 (dark grey, centre), and j = 3 (black, right). In this case the best solution is obtained using colour
j = 1, giving thirteen happy vertices.

4.2 IP Formulation

Our IP model for the MHIS problem is defined using binary variables xij , where xij = 1 if vertex vi is
assigned to colour j and xij = 0 otherwise. In addition to the k colours, in this formulation a dummy colour
with label k + 1 is used to indicate vertices that will not be coloured in the final solution. The objective is
to then maximise the number of vertices assigned to colours 1, . . . , k, which is equivalent to minimising the
number of vertices assigned to colour k+1. We now seek to maximise the objective function n−(

∑n
i=1 xi,k+1)

subject to:

k+1∑
j=1

xij = 1 ∀vi ∈ V (8)

xij = 1 ∀vi ∈ V ′ : c(vi) = j (9)

xi1,j1 + xi2,j2 ≤ 1 ∀{vi1 , vi2} ∈ E,∀j1, j2 ∈ {1, . . . , k} : j1 6= j2. (10)

Constraint (8) states that each vertex should be assigned to exactly one of the k+ 1 colours; Constraint (9)
ensures that the precolourings are obeyed; and Constraint (10) prevents adjacent vertices from being assigned
to different colours that both belong to the set {1, . . . , k}.

For our trials this IP model was augmented by first running the steps outlined in Section 4.1, giving
us a lower bound and perhaps some additional precoloured vertices. The initial solution was then used to
warm-start the IP optimiser. In addition, for each instance we also calculated the upper bound H̄(G) using
the methods from Section 3.3 allowing us to impose an additional constraint:

n−

(
n∑

i=1

xi,k+1

)
≤ H̄(G) (11)

We found that these augmentations nearly always improved the success rates and run times of the IP
optimiser.1

An alternate formulation of the IP can also be obtained by replacing Constraint (10) by:

xi1,j + xi1,k+1 ≥ xi2,j ∀{vi1 , vi2} ∈ E,∀j ∈ {1, . . . , k}. (12)

This constraint leads to fewer constraints overall, though, the formulation is relatively weak. In initial
experiments it was found that solutions to most problem instances could not be found within 10 minutes.2

Hence the remainder of this paper focuses on the IP model using Constraint (10).

4.3 Tabu Search

The second optimisation method used in our experiments is based on tabu search—a metaheuristic based on
local search, but which also has mechanisms to help avoid cycling, therefore encouraging the algorithm to
enter previously unexplored regions of the solution space. The general approach operates by taking an initial

1We conducted preliminary experiments on scale-free graphs with 1000 vertices and 10 colours with and without Con-
straint (11). We found that the average run time using H̄(G) was 70.1 seconds whereas the average run time without it was
123.3 seconds. Moreover, an improvement of run time was seen in 94% of the problem instances.

2We allow a 10 minute run-time limit for all our experiments. Considering problem instances with d-regular graphs and 50
colours, solutions were found for 8% of the problem instances using Constraint 12, whereas solutions were found for 90% of the
problem instances using Constraint 10.
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solution S and then repeatedly applying a neighbourhood operator to try to make improvements. At the
same time, the algorithm also makes use of a memory structure called a “tabu list” that specifies parts of the
solution space that cannot be visited, perhaps because they have already been considered by the algorithm
in previous iterations. This is used to help the algorithm “home in” on high-quality solutions.

Our algorithm, which we refer to here as Tabu, is based on similar applications of tabu search with other
types of graph partitioning problem [7, 21], albeit with different operators tailored to the MHIS problem.
Having produced an initial feasible solution S = (S1, . . . , Sk)∪U , the algorithm proceeds using the objective

function f(S) =
∑k

i=1 |Si| = n− |U |, which gives the number of happy (coloured) vertices. Given a feasible
solution S, a move in the solution space is achieved by selecting an uncoloured non-bridging vertex v ∈ U
and assigning it to a colour class Sj . The move is then completed by examining each vertex u ∈ Γ(v) and,
if u is assigned to a colour class Si 6=j , removing its colour by transferring it to U . Note that this operator
will retain solution feasibility in all cases except where a vertex u ∈ Γ(v) is precoloured to something other
than colour j. If this is the case, the move is not carried out. Similarly, a move will increase the objective
function value (by one) only when the coloured neighbours of v are already assigned to colour class Sj .

The tabu list of this algorithm is stored using a matrix Tn×k. At iteration l of the algorithm, if a move
is performed that involves transferring a vertex u from Si to U , the element Tui is set to l + t, where t is
a positive integer that will be defined presently. This signifies that the transfer of u back to colour class Si

is tabu (not allowed) for the next t iterations of the algorithm. Note that this has the effect of making all
solutions containing the assignment of vertex u to Si tabu.

As is typical in tabu search, in each iteration of this algorithm the entire set of |U | × k neighbouring
solutions is evaluated. The non-tabu move that brings about the largest increase (or failing that, the smallest
decrease) in the objective function is then performed. Any ties in this criterion are broken randomly. In
addition, we use also an aspiration criterion that allows tabu moves to be made if they are seen to improve
on the best solution found so far during the run. Finally, if all possible moves are seen to be tabu, then a
randomly selected move is performed. The tabu list is then updated as usual.

As we might expect, the process of evaluating all possible moves at each iteration has the potential to
consume the majority of this algorithm’s execution time. However, considerable speedups can be achieved
using an additional matrix Cn×k where, given the current solution S and a vertex v ∈ U , element Cvj

indicates the number of vertices that would be added to U if v were to be moved to colour class Sj . To
choose the next move to perform, we then only need to scan rows of C that correspond to non-bridging
vertices in U . Once a particular move has been performed, only the relevant parts of C then need to be
updated: namely, all rows corresponding to vertices in U or vertices within distance one or two of v in G.

Finally, with regards to the tabu tenure t, various studies for graph partitioning problems have found
that a successful approach involves making t a random variable that is proportional to the current solution’s
quality [7, 20]. The idea is that when the solution is of low quality, t should assume higher values, which will
hopefully compel the algorithm to seek out new regions of the solution space. On the other hand when the
solution has a high quality, the algorithm should focus more on the current region by using low values for t.
To these ends we choose to set t = r + τ(H̄(G) − f(S)), where r is an integer randomly selected from the
set {0, 1, . . . , 9} at each iteration, and τ ∈ R+ is a parameter to be tuned.

4.4 Tabu Search with Diversification

Our final optimisation method Tabu+ operates in the same way as Tabu except that it also includes a
diversification operator that allows large jumps to be made within the solution space from time-to-time.
This operator was introduced because, for some instances, Tabu was seen to quickly move to a fairly good
solution but then make no further improvements for the remainder of the run, perhaps suggesting that it
was caught in a region of the solution space surrounding a local optima. The intention of the diversification
operator is to therefore make relatively large changes, encouraging new parts of the solution space to be
explored.

Our proposed diversification operator exploits the underlying structure of the MHIS problem in that
it makes large changes to a solution but without compromising its quality. Using a candidate solution
S = (S1, . . . , Sk) ∪ U , let Gi be the subgraph induced from G using the vertices belonging to Si only, and
let Ci1, Ci2, . . . , Cil be the components of Gi. A free i-component is any of these components that comprises
free vertices only. Note that all neighbours of vertices in a free i-component are either themselves free and
coloured with i, or are free and uncoloured. Consequently, if all vertices in a free i-component are reassigned
to a new colour j, then the resultant solution will remain feasible and contain the same number of happy
vertices.

Our diversification operator considers each colour i in turn and randomly identifies a single free i-
component (if indeed one exists for this colour). The vertices in this component are then assigned to a
new colour j 6= i, selected at random. Once all colours i = 1, . . . , k have been considered, the tabu list is
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reset so that all potential moves are deemed non-tabu. Tabu search then continues as usual.
In our experiments, the diversification procedure was applied whenever the best solution found so far

during the run had not improved over the previous ten seconds. In each application, a random 50:50 choice
was also made between perturbing the run’s current solution or the best solution seen so far. The latter
option allowed the algorithm to sometimes focus its attentions on the very best solutions, which we found
was sometimes necessary to get closer to globally optimal solutions.

5 Experimental Analysis

In this section we make use of our proposed methods to explore the characteristics that make instances of the
MHIS problem difficult to solve. Our IP model was implemented using Gurobi Optimiser Version 8.0.0 and
executed with memory limits of 50 GB per-run. All remaining procedures were coded in C++ and can be
downloaded at [2], together with a full listing of our experimental data. Trials were carried out using Monash
University’s computing cluster MonARCH using a CPU time limit of 600 seconds per trial.3 Our problem
instance generator, also programmed in C++, is available at [1]. Note that due to space reasons we do not
include all tables of results here; instead, each subsection shows results indicative of general trends. We
then make comments on other cases as necessary. A full set of results tables can be found in supplementary
material [3].

5.1 Problem Instance Generation

Three graph topologies were considered in our experiments: random, d-regular, and scale-free. Random
graphs were produced by starting with a set of n isolated vertices and then adding edges between each pair
of vertices with a fixed probability p. This leads to a graph with approximately

(
n
2

)
p edges and a binomial-

shaped degree distribution with mean (n− 1)p and variance (n− 1)p(1− p). d-regular graphs are similar to
random graphs except that the degree of each vertex is equal to d, where d ∈ {0, 1, . . . , n − 1}. These were
produced using the randomised method of Steger and Wormald [27].

Scale-free graphs were also considered in our trials because they are known to model many real-world
networks such as the World Wide Web, social networks, and the citation networks of academic papers [6].
They are based around the idea of “preferential attachment” in that, when a vertex is added to a graph, it
is more likely to be made adjacent to vertices of high degrees. The degree distributions of scale-free graphs
therefore follow a power law, in which a small number of “hub” vertices feature disproportionately high
degrees compared to the remaining vertices. In our experiments scale-free graphs were produced using the
Barabási-Albert method [6], using a parameter q ∈ {0, 1, . . . , n}. We start with a complete graph G =
(V,E) = Kq, comprising q vertices and

(
q
2

)
edges. In each step a new vertex v is then added to G together

with q edges that connect v to vertices already in G. This is done via a series of q roulette-wheel trials where,
in each case, the probability P (u, v) of adding the edge {u, v} to E is calculated as

P (u, v) =


deg(u)∑

w∈(V−Γ(v)) deg(w)
if {u, v} /∈ E

0 otherwise.

(13)

Here, (V − Γ(v)) denotes the set of vertices in G that are not yet adjacent to v. Vertices are added in this
way until a graph with n vertices and m =

(
q
2

)
+ q(n − q) edges is formed. According to this method, a

setting of q = 0 gives an empty graph on n vertices, q = 1 leads to acyclic graphs, and q = n − 1 or q = n
gives the complete graph Kn.

Upon producing the desired graph, the precoloured vertices need to be specified. In our case this is done
randomly while also ensuring that each colour {1, . . . , k} is used at least once. This leads to approximately
equal numbers of vertices per colour. Note that when values for |V ′|, k, and/or the graph density are high,
it may not be possible to assign colours to vertices while ensuring that adjacent vertices are precoloured
differently. In our case our implemented generator makes 100 independent attempts at precolouring the
vertices and gives up if none of these are successful. An alternative approach would be to allow adjacent
vertices to be precoloured differently and then create additional bridging vertices between them, though this
would also alter the underlying structure of the graphs.

For the experiments in the next three subsections a total of 12,840 problem instances were used. Specifi-
cally, for each density value and proportion of precoloured vertices (indicated by the points in the rightmost
chart in Figure 2), twenty 1000-vertex instances were generated. This was done using random, d-regular and

3Each machine on MonARCH has 24 cores and 256 GB RAM and each physical core consists of two hyper-threaded cores
with Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT, 12C/24T (120W).
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scale-free graphs for k ∈ {3, 10, 50}. Note that when the desired number of precoloured vertices in a graph is
less than k, then a valid problem instance cannot be generated. In addition, instances could not be generated
for higher densities using k = 50 because we were unable to assign the desired number of precoloured vertices
while ensuring that adjacent vertices had different colours. Such parameter combinations are therefore not
included in our tables of results.

Finally, note that we do not consider the subdivision of problems in our experiments here because we
have found that the necessary separating sets do not seem to naturally arise in the graphs generated using
our methods. They may occur more frequently if problems are generated with more targeted choices of
precoloured vertices and/or using different graph topologies, however. For example, if problem instances
were known to feature precoloured articulation points, dividing up graphs may well turn out to be a useful
strategy.

5.2 Preprocessing and the Number of Happy Vertices

In this subsection we consider the factors that allow further precoloured vertices to be added to a graph using
our preprocessing step from Section 4.1. We also give an indication of the number of happy vertices that are
achievable for different types of problem instance by reporting the quality of the “best observed” solutions.
For each problem instance, this value was determined by running our IP model and two tabu search variants
and taking the best solution from among these. As we see in the next subsection, in many cases the best
observed solutions are actually the proven global optima due to the success of the IP optimiser across this
instance set.

Table 1 summarises our results for all random graphs in our test set, distinguishing instances by the
number of colours k, the mean degree, and the proportion of precoloured vertices. For very sparse graphs
we see that the preprocessing step has a considerable effect because the lack of edges means that many of
the vertices satisfy the criteria stated in Section 4.1. For the same reason, these effects also increase slightly
for instances using fewer colours. Similar patterns were also observed with d-regular and scale-free graphs,
albeit with further precolourings only tending to be added for instances with mean degrees of less than three
due to their more predictable topologies [3]. For 1-regular graphs, we also saw that the preprocessing step
was able to precolour all free vertices, giving H(G)∗ = n. This is due to Lemma 1.

Table 1 also shows the number of happy vertices that we can expect to achieve with different 1000-vertex
random graphs. In general we see that a greater number of vertices can be happy when graphs are sparse
and/or when they feature a low proportion of precoloured vertices. Such graphs represent less constrained
problem instances, with free vertices having fewer neighbours whose colours they need to match. The same
patterns were also observed with d-regular and scale-free graphs [3].

5.3 IP Optimiser Performance

In this section we examine the performance of the IP optimiser on our problem instance set. In general we
found this method to be very successful, with 10,744 of our 12,840 problem instances (83.7%) being solved
to a proven optimality within the 600 second time limit; however, we were also able to identify pockets of
problem instances that presented much more difficulty.

Results for random graphs are summarised in Table 2. Success rates in the table give the proportion of
instances for which a proven optimum was achieved within the time limit. Bold text is used to highlight
success rates of less than one. Where possible, mean run times and optimality gaps are also given. We see
that when k = 3, instances are solved in all cases with mean run times not exceeding six seconds; however,
for k ∈ {10, 50}, there are clearly areas where the algorithm experiences more difficulties.

Table 2 shows that for k ∈ {10, 50}, easy-to-solve problem instances seem to occur in two places: (a) where
problems are under-constrained, in that they have relatively few edges and/or precoloured vertices; and (b)
where problems are over-constrained, because they contain very many edges and/or precoloured vertices.
Difficult problems lie at the boundaries of these extremes. Areas of difficulty such as this are often known as a
phase transition regions and have previously been shown to exist in other areas of combinatorial optimisation
including graph k-colouring, timetabling, constraint satisfaction, and Sudoku problems [9, 12, 14, 19, 25].
Gaps between the best observed solutions and the upper bound H̄(G) (Section 3.3) were also seen to be
largest within these phase transition regions.

For k = 50 we also see that the phase transition regions are wider and the optimality gaps are much
higher, indicating that the IP optimiser finds these problem instances much more challenging. Indeed in the
cases indicated by asterisks in the Table 2, the optimiser was not even able to complete its initial stages of
pre-solve within the time limit, meaning that improvements on the initial solution were not even attempted.
These difficulties seem due to Constraint (10) in our IP model, which is expressed across every edge and
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Proportion of Vertices Precoloured
Mean deg. 0.01 0.03 0.05 0.1 0.2 0.3
k = 3
1 10 (965.0) [999.6] 30 (923.0) [998.2] 50 (912.3) [996.7] 100 (890.8) [991.3] 200 (876.8) [979.3] 300 (880.9) [967.3]
2 10 (212.3) [991.2] 30 (237.4) [973.7] 50 (263.4) [959.8] 100 (323.1) [930.9] 200 (431.6) [896.1] 300 (524.9) [872.8]
3 10 (68.1) [984.6] 30 (91.0) [955.6] 50 (113.0) [926.9] 100 (169.4) [868.6] 200 (278.9) [810.1] 300 (382.1) [775.8]
4 10 (31.0) [978.7] 30 (52.3) [935.0] 50 (73.1) [897.7] 100 (125.2) [817.9] 200 (229.6) [731.3] 300 (332.3) [693.7]
5 10 (17.3) [972.8] 30 (37.8) [920.7] 50 (58.1) [874.1] 100 (109.0) [768.7] 200 (212.0) [664.7] 300 (313.3) [625.1]
6 10 (13.3) [967.7] 30 (33.3) [905.0] 50 (53.6) [846.7] 100 (104.0) [728.7] 200 (205.3) [612.2] 300 (305.8) [571.7]
7 10 (11.1) [961.0] 30 (31.3) [889.2] 50 (51.4) [825.9] 100 (101.9) [692.6] 200 (202.2) [561.3] 300 (302.8) [523.4]
8 10 (10.5) [956.9] 30 (30.5) [872.1] 50 (50.6) [801.3] 100 (100.7) [662.1] 200 (200.8) [523.2] 300 (300.9) [481.4]
9 10 (10.2) [951.7] 30 (30.3) [858.4] 50 (50.3) [783.2] 100 (100.4) [624.1] 200 (200.4) [485.1] 300 (300.4) [447.7]
10 10 (10.1) [945.9] 30 (30.1) [841.4] 50 (50.1) [758.1] 100 (100.2) [595.6] 200 (200.2) [454.3] 300 (300.2) [421.9]
20 10 (10) [899.1] 30 (30) [723.2] 50 (50) [589.0] 100 (100) [384.6] 200 (200) [283.5]
30 10 (10) [849.0] 30 (30) [610.8] 50 (50) [451.4] 100 (100) [265.1]
40 10 (10) [807.8] 30 (30) [522.8] 50 (50) [358.9] 100 (100) [217.4]
50 10 (10) [763.5] 30 (30) [461.5] 50 (50) [306.2] 100 (100) [175.9]
100 10 (10) [608.2] 30 (30) [275.5] 50 (50) [195.0]
200 10 (10) [354.3]
350 10 (10) [201.5]
k = 10
1 10 (956.6) [999.5] 30 (911.5) [997.4] 50 (897.4) [995.6] 100 (875.1) [988.8] 200 (859.0) [972.7] 300 (857.9) [957.5]
2 10 (212.2) [986.6] 30 (237.1) [963.8] 50 (262.2) [945.8] 100 (320.3) [915.7] 200 (423.6) [879.7] 300 (510.6) [847.6]
3 10 (68.2) [976.3] 30 (90.9) [935.7] 50 (112.6) [900.6] 100 (168.1) [830.9] 200 (274.0) [778.3] 300 (373.6) [739.8]
4 10 (31.0) [967.1] 30 (52.3) [910.0] 50 (73.1) [859.1] 100 (124.3) [762.0] 200 (227.2) [691.1] 300 (328.7) [651.5]
5 10 (17.3) [958.2] 30 (37.8) [887.6] 50 (58.1) [826.3] 100 (109.1) [704.0] 200 (211.8) [623.9] 300 (311.8) [580.2]
6 10 (13.3) [949.9] 30 (33.3) [867.4] 50 (53.5) [792.0] 100 (103.9) [655.5] 200 (204.6) [565.7] 300 (304.6) [525.2]
7 10 (11.1) [941.2] 30 (31.3) [846.8] 50 (51.4) [760.1] 100 (101.8) [606.3] 200 (201.9) [514.2] 300 (301.9) [476.1]
8 10 (10.5) [931.9] 30 (30.5) [823.6] 50 (50.6) [732.6] 100 (100.7) [564.7] 200 (200.7) [469.9] 300 (300.7) [434.4]
9 10 (10.2) [924.0] 30 (30.3) [807.6] 50 (50.3) [704.4] 100 (100.4) [525.1] 200 (200.4) [431.9] 300 (300.3) [397.5]
10 10 (10.1) [915.7] 30 (30.1) [788.1] 50 (50.1) [677.4] 100 (100.2) [491.0] 200 (200.2) [401.8] 300 (300.1) [372.8]
20 10 (10) [837.5] 30 (30) [626.2] 50 (50) [469.5] 100 (100) [279.7] 200 (200) [232.7]
30 10 (10) [764.5] 30 (30) [500.8] 50 (50) [336.7] 100 (100) [194.4]
40 10 (10) [702.3] 30 (30) [390.9] 50 (50) [238.2] 100 (100) [148.0]
50 10 (10) [637.0] 30 (30) [321.4] 50 (50) [179.6] 100 (100) [119.2]
100 10 (10) [396.3] 30 (30) [115.5] 50 (50) [74.8]
200 10 (10) [147.1]
350 10 (10) [32.1]
k = 50
1 50 (892.1) [994.9] 100 (869.7) [987.7] 200 (855.2) [971.2] 300 (853.1) [954.8]
2 50 (262.6) [935.3] 100 (320.0) [907.2] 200 (421.3) [873.8] 300 (505.9) [839.8]
3 50 (112.9) [884.2] 100 (167.7) [816.8] 200 (272.6) [769.5] 300 (371.0) [729.7]
4 50 (72.9) [838.4] 100 (124.1) [744.3] 200 (226.8) [680.5] 300 (327.7) [639.1]
5 50 (58.2) [798.6] 100 (109.0) [679.4] 200 (211.4) [611.7] 300 (311.4) [567.6]
6 50 (53.6) [760.1] 100 (103.9) [627.4] 200 (204.5) [554.2] 300 (304.2) [511.0]
7 50 (51.4) [723.4] 100 (101.8) [578.0] 200 (201.8) [502.0] 300 (301.7) [462.5]
8 50 (50.6) [689.4] 100 (100.6) [532.0] 200 (200.6) [458.3] 300 (300.5) [421.4]
9 50 (50.3) [658.6] 100 (100.4) [488.5] 200 (200.4) [420.2] 300 (300.2) [385.2]
10 50 (50.2) [626.9] 100 (100.2) [456.3] 200 (200.2) [390.0] 300 (300.1) [358.7]
20 50 (50) [394.4] 100 (100) [260.1] 200 (200.0) [224.6]
30 50 (50) [253.2] 100 (100) [182.6]
40 50 (50) [174.6] 100 (100) [138.0]
50 50 (50) [130.2] 100 (100) [109.9]
100 50 (50) [64.3]

Table 1: Number of happy (precoloured) vertices in the initial problem instance, after the preprocessing
step (in parentheses), and in the best observed solution (in square braces), for random graphs with differing
k-values, densities, and proportions of precoloured vertices. Each figure is the mean from twenty problem
instances using n = 1000.

every pair of colours. Larger values of k therefore lead to more constraints, leading to very large memory
requirements and processing times.

Phase transition regions were also seen to exist in the same areas with scale-free and d-regular graphs.
For d-regular graphs these regions also seemed to be wider and more pronounced, with dips in success rates
even occurring with 3-colour problem instances, as shown in Figure 6. By definition, in d-regular graphs,
the variance across vertex degrees is zero, so from an algorithmic point-of-view this might make all vertices
“look the same”, reducing the amount of heuristic information to be exploited. Similarly, scale-free graphs
feature much higher levels of degree variance, and their phase transition regions were seen to be the least
drastic of the three topologies [3].
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Proportion of Vertices Precoloured
Mean Deg. 0.01 0.03 0.05 0.1 0.2 0.3
k = 3
1, 2 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
3 1.00 (1) 1.00 (0) 1.00 (1) 1.00 (1) 1.00 (0) 1.00 (0)
4 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (0) 1.00 (0)
5 1.00 (2) 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (0)
6 1.00 (2) 1.00 (2) 1.00 (1) 1.00 (2) 1.00 (3) 1.00 (0)
7 1.00 (4) 1.00 (2) 1.00 (2) 1.00 (2) 1.00 (2) 1.00 (0)
8 1.00 (4) 1.00 (3) 1.00 (2) 1.00 (1) 1.00 (2) 1.00 (0)
9 1.00 (4) 1.00 (3) 1.00 (1) 1.00 (2) 1.00 (0) 1.00 (0)
10 1.00 (5) 1.00 (3) 1.00 (2) 1.00 (2) 1.00 (0) 1.00 (0)
20 1.00 (1) 1.00 (0) 1.00 (1) 1.00 (1) 1.00 (0)
30 1.00 (2) 1.00 (1) 1.00 (0) 1.00 (0)
40 1.00 (3) 1.00 (1) 1.00 (0) 1.00 (0)
50 1.00 (3) 1.00 (1) 1.00 (0) 1.00 (1)
100 1.00 (6) 1.00 (1) 1.00 (1)
200 1.00 (4)
350 1.00 (6)
k = 10
1 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
2 1.00 (64) 1.00 (67) 1.00 (47) 1.00 (90) 1.00 (1) 1.00 (0)
3 1.00 (122) 1.00 (177) 1.00 (173) 0.10 (284) [0.006] 1.00 (18) 1.00 (0)
4 1.00 (128) 1.00 (202) 1.00 (281) 0.20 (245) [0.007] 1.00 (103) 1.00 (0)
5 1.00 (81) 1.00 (134) 0.95 (238) 0.073 0.20 (285) [0.009] 1.00 (120) 1.00 (0)
6 1.00 (57) 1.00 (78) 1.00 (207) 0.20 (235) [0.010] 0.75 (77) [0.003] 1.00 (1)
7 1.00 (73) 1.00 (71) 1.00 (161) 0.15 (259) [0.016] 0.95 (35) [0.006] 1.00 (1)
8 1.00 (88) 1.00 (78) 1.00 (103) 0.20 (361) [0.022] 1.00 (23) 1.00 (1)
9 1.00 (109) 1.00 (65) 1.00 (96) 0.10 (170) [0.024] 1.00 (2) 1.00 (1)
10 1.00 (134) 1.00 (71) 1.00 (85) 0.10 (61) [0.033] 1.00 (2) 1.00 (2)
20 1.00 (169) 1.00 (40) 1.00 (54) 0.10 (15) [0.047] 1.00 (4)
30 1.00 (237) 1.00 (31) 0.95 (40) [0.027] 1.00 (10)
40 1.00 (272) 1.00 (26) 0.90 (34) [0.039] 1.00 (9)
50 1.00 (290) 1.00 (21) 0.75 (39) [0.026] 1.00 (11)
100 1.00 (247) 1.00 (25) 1.00 (23)
200 1.00 (69)
350 1.00 (82)
k = 50
1 1.00 (23) 1.00 (12) 1.00 (8) 1.00 (6)
2 0.00 (-) [0.028] 0.25 (361) [0.017] 1.00 (49) 1.00 (16)
3 0.00 (-) [0.056] 0.00 (-) [0.037] 0.90 (92) [0.002] 1.00 (21)
4 0.00 (-) [0.078] 0.00 (-) [0.053] 0.60 (117) [0.003] 1.00 (25)
5 0.00 (-) [0.098] 0.00 (-) [0.048] 0.60 (265) [0.004] 1.00 (29)
6 0.00 (-) [0.115] 0.00 (-) [0.043] 0.65 (223) [0.004] 1.00 (33)
7 0.00 (-) [0.133] 0.00 (-) [0.043] 0.85 (119) [0.003] 1.00 (39)
8 0.00 (-) [0.143] 0.00 (-) [0.052] 0.95 (59) [0.002] 1.00 (43)
9 0.00 (-) [0.164] 0.00 (-) [0.060] 1.00 (58) 1.00 (49)
10 0.00 (-) [0.181] 0.00 (-) [0.067] 1.00 (59) 1.00 (55)
20 0.00 (-) [0.118] 0.00 (-) [0.067] 1.00 (112)
30 0.00 (-) [0.144] 1.00 (195)
40 0.00 (-) [0.406]* 0.00 (-) [0.181]*
50 0.00 (-) [0.434]* 0.00 (-) [0.057]*
100 0.00 (-) [0.182]*

Table 2: Success rates of the IP optimiser for random graphs. For non-zero success rates, figures in parenthesis
give the mean CPU time (to the nearest second) of successful runs. For success rates of less than one, figures
in square braces indicate the mean optimality gap in unsuccessful runs at the time limit (calculated as the
difference between the IP optimiser’s upper and lower bounds, divided by the upper bound). Each figure is
the mean from twenty problem instances using n = 1000.

5.4 IP and Tabu Search Comparison

We now consider the relative performance on the IP and tabu algorithms. All trials with the latter were
conducted using a setting of τ = 2. This value was determined using a test set comprising the first instance
of every set of twenty considered in the previous subsection (giving 12840/20 = 642 instances in total). Tabu
search was then run on this set for 600 seconds using values of τ ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 8,
10}. Our results indicated that τ = 2 resulted in the largest number of happy vertices across these instances,
and that movements away from τ = 2 resulted in fewer happy vertices overall. Note, however, that these
falls in performance were only marginal: the difference between the worst result (τ = 0) and the best was
fewer than one vertex in a thousand, suggesting that the algorithm is not overly sensitive to changes in this

14



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Su
cc

es
s 

R
at

e

Average Degree

k = 3

k = 10

k = 50

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Su
cc

es
s 

R
at

e

Average Degree

k = 3

k = 10

k = 50

Figure 6: Success rates achieved by the IP optimiser with various d-regular (left) and random (right) graphs
in which 20% of vertices are precoloured. All points are means across twenty problem instances.

Time (seconds)
Algorithm <1 10 60 600
IP 41.2% 75.7% 84.7% 94.2%
Tabu 41.2% 72.9% 73.9% 75.3%
Tabu+ 41.2% 72.9% 76.2% 80.8%

Table 3: Percentage of problem instances where the best observed solution was achieved by each algorithm
at the stated time.

parameter.
An obvious advantage of using IP techniques with this problem is its ability to decrease the upper

bound over time and therefore often report with certainty when an optimal solution has been achieved.
On the other hand, applications of our tabu search algorithms can only report optimality when a solution
with H(G)∗ = H̄(G) happy vertices has been achieved, which may not even be possible for many problem
instances. Nevertheless, for our analysis we use the optimal solutions determined by the IP optimiser to help
gauge the accuracy of the tabu search algorithms.

As noted earlier, our trials with IP optimiser saw 10,744 of the 12,840 instances being solved to optimality.
Of these solved instances, the Tabu algorithm found solutions of equal quality for 8,514 (79.2%). For Tabu+
this figure increased to 8,907 (82.9%). On the other hand, of the 2,096 instances not solved by the IP optimiser,
Tabu was seen to return better solutions for 673 (32.1%), worse solutions for 793 (37.9%), with the remainder
tied. The corresponding figures for Tabu+ were slightly better at 740 (35.3%) and 630 (30.0%) respectively.

Considering the set of 1000-vertex instances as a whole, Table 3 shows, for each algorithm and various
times, the percentage of problem instances where the best observed solution4 was achieved. Here, the column
labelled < 1 refers to the initial solutions produced using our heuristic method from Section 4.1; hence, in
41.2% of instances, these initial solutions are equal in quality to the best observed solutions. Table 3 clearly
demonstrates the superiority of the IP optimiser with these problems, even after just ten seconds of run time.
Tabu, on the other hand, seems to make progress in the first ten seconds, but only marginal improvements
after that. As shown, this feature is alleviated to a certain extent by the diversification operator used with
Tabu+, though its results are still inferior to the IP optimiser with these instances overall.

Table 4 uses random graphs to indicate the types of problem instance for which the IP optimiser and
Tabu+ outperform each other. Consistent findings were again seen with the other graph topologies consid-
ered [3]. For smaller numbers of colours (k ∈ {3, 10}) the IP optimiser is consistently superior to Tabu+,
with its benefits usually being seen in and around the phase transition areas. This is despite the fact that the
IP optimiser has often been unable to achieve optimality with these instances. The quality of the algorithms’
solutions are usually quite similar over these regions however, with differences in the number of happy ver-
tices usually fewer than three. The exception to these patterns occurs with k = 50 and low proportions
of precoloured vertices, where Tabu+ consistently produces superior results. Indeed, for mean degrees of
greater than 40 these differences in the number of happy vertices were often seen to be more than twenty,
again highlighting the difficulties that the IP optimiser experiences with these particular problems.

5.5 Influence of Problem Size

Our next set of experiments compares the performance of the IP optimiser and Tabu+ on problem instances
with varying numbers of vertices. Results are summarised in Table 5 where we consider random graphs with

4Defined in Section 5.2.
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Proportion of Vertices Precoloured
Mean Deg. 0.01 0.03 0.05 0.1 0.2 0.3
k = 3
1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05)
2 0.00 (0.00) 0.00 (0.15) 0.00 (0.25) 0.00 (0.65) 0.00 (0.75) 0.00 (1.00)
3 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.25) 0.00 (0.80) 0.00 (0.95)
4 0.00 (0.00) 0.00 (0.10) 0.00 (0.00) 0.00 (0.00) 0.00 (0.45) 0.00 (0.80)
5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05) 0.00 (0.45) 0.00 (0.50)
6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.20) 0.00 (0.20) 0.00 (0.35)
7 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05) 0.00 (0.25) 0.00 (0.20)
8 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.15)
9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.30) 0.00 (0.00)
10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.15) 0.00 (0.00)
≥ 20 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
k = 10
1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05) 0.00 (0.20) 0.00 (0.05)
2 0.00 (0.10) 0.00 (0.10) 0.00 (0.40) 0.00 (1.00) 0.00 (0.90) 0.00 (0.80)
3 0.00 (0.00) 0.00 (0.00) 0.00 (0.20) 0.00 (1.00) 0.00 (1.00) 0.00 (0.95)
4 0.00 (0.00) 0.00 (0.00) 0.00 (0.20) 0.00 (0.60) 0.00 (1.00) 0.00 (0.85)
5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.05 (0.15) 0.00 (1.00) 0.00 (0.45)
6 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.20) 0.00 (1.00) 0.00 (0.25)
7 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05) 0.00 (0.95) 0.00 (0.05)
8 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.90) 0.00 (0.00)
9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.60) 0.00 (0.00)
10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.45) 0.00 (0.00)
20 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.55) 0.00 (0.00)
30 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.40)
≥ 40 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
k = 50
1 0.00 (0.00) 0.00 (0.10) 0.00 (0.35) 0.00 (0.20)
2 0.70 (0.10) 0.10 (0.75) 0.00 (1.00) 0.00 (0.90)
3 0.95 (0.00) 0.05 (0.95) 0.00 (1.00) 0.00 (0.90)
4 0.95 (0.00) 0.10 (0.65) 0.00 (1.00) 0.00 (0.85)
5 1.00 (0.00) 0.20 (0.40) 0.00 (1.00) 0.00 (0.60)
6 0.85 (0.00) 0.05 (0.55) 0.00 (1.00) 0.00 (0.20)
7 0.90 (0.00) 0.10 (0.25) 0.00 (0.95) 0.00 (0.25)
8 0.75 (0.00) 0.15 (0.20) 0.00 (0.95) 0.00 (0.10)
9 0.75 (0.00) 0.30 (0.25) 0.00 (0.80) 0.00 (0.05)
10 0.60 (0.00) 0.15 (0.05) 0.00 (0.60) 0.00 (0.00)
20 0.05 (0.00) 0.35 (0.55) 0.00 (0.00)
30 0.00 (0.00) 0.00 (0.65)
40 0.85 (0.00) 1.00 (0.00)
≥ 50 1.00 (0.00) 1.00 (0.00)

Table 4: Comparison of the IP and Tabu+ algorithms with random graphs. Figures in the table give the
proportion of problem instances where Tabu+ returned a better solution and, in parenthesis, the proportion
where the IP optimiser gave better solutions. All figures are taken from runs across twenty problem instances.

mean degrees of five in which 10% of vertices have been precoloured. These can be considered difficult-to-
solve instances according to our results from Section 5.3. As previously, CPU time limits of 600 seconds are
used.

For lower values of k and n we see that the IP optimiser has high success rates and low computation
times. The solutions of Tabu+ are quite close in terms of the number of happy vertices, but are consistently
inferior in quality. On the other hand, the advantages of Tabu+ become apparent for higher values of k
and n, indicating that the IP optimiser is struggling with larger instances of this problem. The asterisks in
Table 5 also highlight the places where, with all instances, the IP optimiser was even unable to complete its
pre-solve routines within the time limit. The results recorded here therefore correspond to the lower bound
given by our initial solution (Section 4.1) and the upper bound of H̄(G) (Section 3.3). As can be seen in the
table, these results are substantially worse than those of Tabu+.

5.6 Choice of Precoloured Vertices

In our previous experiments, problem instances have been generated by precolouring randomly selected
vertices. However, we might also ask whether biasing these choices towards certain vertices will influence
the types of solution that are produced. In particular, if only the low-degree vertices are precoloured in a
graph, we should expect solutions to contain fewer uncoloured vertices overall because there will be fewer
paths between precoloured vertices. Table 6 summarises some results in this regard for random and scale-free
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IP Optimiser Tabu+
n Num. Happy SR (Secs) [Gap] Num. Happy Secs
k = 3
250 196.20 1.00 (0) 196.20 (0)
500 385.85 1.00 (0) 385.70 (0)
1000 768.65 1.00 (2) 768.55 (2)
2500 1903.60 0.90 (79) [0.004] 1903.45 (30)
5000 3795.05 0.70 (228) [0.002] 3794.60 (28)
7500 5674.85 0.15 (431) [0.049] 5679.85 (56)
10000 7487.80 0.05 (474) [0.057] 7496.05 (66)
k = 10
250 177.15 1.00 (6) 177.15 (22)
500 354.80 0.80 (59) [0.012] 354.35 (41)
1000 703.95 0.25 (301) [0.010] 703.65 (45)
2500 1752.70 0.00 (-) [0.036] 1752.30 (160)
5000 3460.80 0.00 (-) [0.121] 3478.75 (79)
7500 5176.20 0.00 (-) [0.123] 5205.85 (191)
10000 6816.80 0.00 (-) [0.127] 6851.35 (229)
k = 50
500 335.25 0.00 (-) [0.022] 334.15 (85)
1000 658.35 0.00 (-) [0.159]* 678.70 (29)
2500 1644.80 0.00 (-) [0.160]* 1692.00 (85)
5000 3276.85 0.00 (-) [0.164]* 3374.55 (147)
7500 4906.95 0.00 (-) [0.165]* 5057.15 (174)
10000 6447.35 0.00 (-) [0.171]* 6645.35 (249)

Table 5: Number of happy vertices in solutions returned by the IP and Tabu+ algorithms with random
graphs of differing values of n and k. For the IP optimiser we also report success rates, CPU times of
successful runs, and optimality gaps of unsuccessful runs. For Tabu+, we report the time after which no
further improvements were achieved. All figures are means taken across twenty problem instances.

Choice of Precoloured Vertices
Graph Type n Lowest Degrees Random Highest Degrees
Random 1000 84.1 ± 0.93 65.5 ± 1.33 54.3 ± 0.80

5000 82.8 ± 0.43 64.0 ± 0.40 52.6 ± 0.35
10000 82.8 ± 0.31 63.9 ± 0.43 52.3 ± 0.28

Scale-free 1000 81.3 ± 0.50 75.9 ± 1.28 56.9 ± 1.79
5000 83.2 ± 0.36 77.5 ± 0.58 55.1 ± 2.01
10000 87.3 ± 0.15 80.4 ± 0.37 54.1 ± 2.02

Table 6: Percentage of vertices seen to be happy in solutions returned by Tabu+ after 600 seconds using
graphs of differing topologies, methods for selecting the precoloured vertices, and values of n. All figures
are means taken across twenty problem instances using k = 10, 10% of precoloured vertices, and an average
vertex degree of six.

graphs (regular graphs are not considered here since, by definition, all vertices have the same degree). In
these cases, instances were generated by simply ordering vertices by degree before randomly assigning them
to colours as before.

The results in Table 6 confirm that, for both topologies, precolouring the lowest degree vertices leads to
more happy vertices, while precolouring the high-degree vertices leads to fewer. (These differences equate
to approximately 30% of vertices in the instances tested). We also see a slight difference in results between
random and scale-free graphs when vertices are randomly assigned, with scale-free graphs usually featuring
more happy vertices. This is due to the way in which edges are distributed in scale-free graphs, which results
in a small number of high-degree vertices, but many more low-degree vertices. Hence, compared to random
graphs, a random selection of vertices in a scale-free graph is less likely to contain vertices of high degree.

5.7 Comparison with MNMC Benchmarks

In Section 2.1 we noted the equivalence of the MHIS problem and the minimum node multi-way cut problem.
This allows the opportunity of comparing our results to those reported by Cornaz et al. [10]. Table 7
summarises the random instances used in their paper.5 These were constructed by creating a random graph
of density 39% before adding some terminal vertices together with a small number of edges between these
terminals and the original graph. Further details are provided in [10]. As noted in Section 2.1, instances of the

5These were provided to us by the authors of [10] on request
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Instance n Number of Sum of terminal Maximum degree m Optimal Lower bound Our results
terminals degrees among terminals (from [10]) (n− H̄(G)) (n− f(S))

R 50 57 7 22 4 511 18 10 18
R 70 77 7 23 4 993 19 11 19
R 100 107 7 22 4 1985 18 11 18
R 300 307 7 23 4 17,792 19 11 19
R 600 607 7 23 4 70,673 19 11 19
R 700 707 7 22 4 96,432 18 11 18
R 800 810 10 51 7 125,978 44 25 44
R 900 910 10 58 7 159,331 51 28 51
R 1000 1010 10 54 9 196,771 45 27 45
R 1200 1210 10 51 7 283,386 44 25 44
R 1300 1310 10 51 7 332,861 44 25 44
R 1500 1510 10 54 7 442,444 47 26 47
R 1800 1815 15 86 8 637,307 78 43 78
R 2000 2015 15 78 10 786,639 68 39 68
R 2100 2115 15 90 8 867,430 82 44 82
R 2300 2315 15 78 8 1,041,158 70 39 70
R 3000 3015 15 85 10 1,770,773 75 42 75
R 3300 3315 15 88 8 2,142,370 80 43 80
R 3800 3815 15 80 8 2,841,805 72 40 72
R 4200 4215 15 89 8 3,472,117 81 44 81
R 4500 4515 15 89 8 3,987,339 81 44 81
R 4800 4815 15 82 8 4,537,794 74 41 74
R 5000 5015 15 74 7 4,922,710 67 37 67

Table 7: Comparison of results using the random problem instances of [10].

MNMC problem can be converted into an equivalent MHIS problem by simply precolouring each terminal
vertex with a different colour. The optimal (minimum) cut size is then calculated using n−H(G)∗.

Table 7 shows the quality of solutions achieved by Tabu with these instances. As shown, they are optimal
in all cases. Surprisingly, these values were actually determined using Tabu’s initial solutions—i.e., solutions
produced using our heuristic from Section 4.1, where all appropriate free vertices are assigned to the same
colour. From the perspective of the MNMC problem, this reveals that optimal solutions to these instances
are those in which the cut vertices are simply the neighbours of all terminals except the terminal with the
highest degree. This fact can also be seen by noting that, for each instance in the table, the optimal value is
equal to the sum of the terminal degrees minus the maximum terminal degree.

Although these instances appear to be quite trivial note that, on its own, our heuristic does not prove the
optimality of these solutions. Table 7 also reveals that the bound H̄(G) is not particularly accurate in these
cases. We also applied our IP optimiser to these instances. Since it is warm-started using our heuristics, the
solutions found by the IP optimizer are at least always as good as the heuristic. Furthermore, we find that
the IP optimizer does not improve upon any of these solutions (naturally, since the solutions are already
optimal); hence, the execution time is spent improving the bounds in order to prove optimality.

6 Conclusions and Further Work

This paper has analysed a number of features of the maximum happy induced subgraph problem, including
methods for determining bounds and for breaking up problems. We have seen that difficult-to-solve instances
of the MHIS problem seem to occur only when there is a suitable balance between the proportion of pre-
coloured vertices and the density of the graph. Instances outside of these phase transition regions tend to
be under- or over-constrained and, consequently, are solved quite easily. These patterns have been seen to
be fairly consistent across random, scale-free, and d-regular topologies, though the latter do seem to present
some extra difficulties for the IP optimiser in and around the regions.

On the whole, the IP optimiser performed very well with our set of 1000-vertex instances, though it does
seem to experience difficulties with the instances featuring larger numbers of colours. On the other hand,
the advantages of the Tabu+ algorithm are apparent with instances with higher numbers of vertices and/or
colours. That said, even with its in-built diversification operator our results have also suggested that Tabu+
does not seem to make significant gains during the latter stages of runs. In some cases this could be because
the algorithm has found an optimal solution but is unable to detect this fact; in other cases it suggests that
the algorithm has stagnated in a particular sub-optimal region of the solution space and that further actions
may be needed to help reinvigorate the search.

One direction of future research would be to seek improvements to our proposed optimisation methods.
On the mathematical programming side, it would be useful to research new IP formulations with the aim
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of improving scalability [10]. Decompositions, such as a Lagrangian relaxation might also prove beneficial
in some cases. It is also likely that matheuristics such as the Construct, Merge, Solve & Adapt method of
Blum et al. [8] might show some promise, particularly for larger problem instances.

Other graph topologies are also of interest. For example, the “small-world” graphs of Watts and Stro-
gatz [28] seek to emulate situations where networks have small average path lengths and local clusters—
features that are often seen in real-world social networks. In preliminary experiments with this topology we
have found that an increased number of colours generally causes a decrease in the number of happy vertices
available in a solution. This matches the results seen with the other topologies. We have also observed that
solutions to graphs with higher clustering coefficients tend to feature more happy vertices than those with
little clustering, particularly in comparison to random and d-regular graphs. This stands to reason because
vertices within each cluster will often be able to assume the same colours as one another, making them
happy. Further research in this area is desirable.

Another avenue of research would be to consider versions of this problem in which graphs are known to
evolve over time through the addition and deletion of vertices, edges, and/or precolourings. If the amount of
change occurring at each time step is known to be quite small, then we may find that a candidate solution
produced for a previous time step, with slight modifications, may also be sufficient for the current time step;
however, with larger changes other approaches might be necessary. If future changes to a problem instance
can be modelled probabilistically, it might also be possible to use this information to produce robust solutions
that, with high probability, remain feasible even when these modifications are made. Some relevant work in
this area with regards to the graph colouring problem is due to Hardy et al. [17].

It would also be interesting to consider decentralised versions of this problem. As we have seen, the
optimisation methods considered here assume that graphs can be stored centrally and that all of its features
are visible to all operators. However, this might not always be the case in practice, either because the graph
is too large to be stored in one location (as with large social networks such as Facebook), or because the
vertices represent independent real-world entities (such as people [18] or radio transmitters [15]) that are
responsible for choosing their own colours and that are only aware of features in certain parts of a graph,
such as their immediate neighbourhood. Clearly, different optimisation schemes will be required for such
problems.
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trees. In V. Mäkinen, S. Puglisi, and L. Salmela, editors, Combinatorial Algorithms: IWOCA 2016, volume 9843 of Lecture
Notes in Computer Science, pages 281–292. Springer Cham., 2016.

[5] N. Aravind, S. Kalyanasundaram, A. Swami Kare, and J. Lauri. Algorithms and hardness results for happy coloring
problems. CoRR, abs/1705.08282, 2017.

[6] A. Barabási. Network Science. Cambridge University Press, 2016.
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