
The School Bus Routing Problem: An Analysis
and Algorithm

R. Lewis1, K. Smith-Miles2, and K. Phillips3

1 School of Mathematics, Cardiff University, Wales.
2 School of Mathematical Sciences, Monash University, Australia.

3 Visible Services and Transport, Vale of Glamorgan Council, Wales.
LewisR9@cf.ac.uk, kate.smith-miles@monash.edu,

kwphillips@valeofglamorgan.gov.uk

Abstract. In this paper we analyse a flexible real world-based model
for designing school bus transit systems and note a number of parallels
between this and other well-known combinatorial optimisation problems
including the vehicle routing problem, the set covering problem, and
one-dimensional bin packing. We then describe an iterated local search
algorithm for this problem and demonstrate the sort of solutions that we
can expect with different types of problem instance.

1 Introduction

Vehicle routing problems (VRPs) involve identifying routes for a fleet of vehicles
that are to serve a set of customers. Often they are expressed using an edge-
weighted directed graph G = (V,E), where the vertex set V = {v0, v1, . . . , vn}
represents a single depot and n customers (v0 and v1, . . . , vn respectively), and
the weighting function w(u, v) gives the travel distance (or travel time) between
each pair of vertices u, v ∈ V .

Since the work of Dantzig and Ramser in the late 1950s [4], a multitude of
VRP formulations have been considered in the literature [7]. These include using
time-windows for visiting certain customers, placing limitations on the lengths
of individual routes, the partitioning of customers into pick-up and delivery
locations, and the dynamic recalibration of routes subject to the arrival of new
customer requests during the transportation period [11].

Solutions to most VRP problems can be expressed by a set of routes R =
{R1, . . . , Rk} using one vehicle per-route. In the classical VRP, each route should
be a simple cycle in G such that:

Ri ∩Rj = {v0} ∀Ri, Rj ∈ R (1)

k⋃
i=1

Ri = V (2)

These constraints specify that each customer should be assigned to exactly one
route, and that all routes should start and end at the depot v0. A variation on

this is the open VRP in which, instead of cycles, all routes must be simple paths
containing v0 as one terminal vertex, meaning that routes either start or end at
the depot, but not both [8].

In the time constrained VRP, extra realism is added by specifying that the
total weight of edges in each route should be less than a given maximum—e.g.,
to ensure that driving time regulations are obeyed. In the capacitated VRP,
meanwhile, maximum capacities are specified for each vehicle, and weights are
also added to the vertices v1, . . . , vn in G. These vertex weights represent the
size of the items being delivered to each customer, and we require the total size
of items delivered by each vehicle to not exceed its maximum capacity.

The split-delivery VRP extends the capacitated VRP by relaxing Constraint
(1) to simply: v0 ∈ R, ∀R ∈ R. This allows more than one vehicle to visit
a customer and therefore permits a delivery to be made in many parts. Un-
like the capacitated VRP, this relaxation also allows the minimum number of
routes/vehicles in a solution to meet the lower bound of d(

∑n
i=1 w(vi)) /Ce,

where w(v) gives the weight of a vertex and C is the maximum capacity of the
vehicles [15].

Objective functions for the VRP can depend on many real world factors.
Most commonly we seek to minimise the number of vehicles used, the total
length of the routes, or some combination of the two. In other cases we might
also be concerned with the waiting times of customers, the obeying of time
windows, avoiding traffic jams, or meeting individual drivers’ needs. A useful
survey presenting a taxonomy of the various types of VRP can be found in [5].

In this paper we look at the problem of arranging school bus transport. This
problem is often cited as a type of VRP applicable in the real-world, though
historically it has been less studied than other variants. One reason for this is that
school transport solutions usually only involve visiting a subset of the available
stopping points (bus stops); hence the issue of choosing which bus stops to visit
adds an extra layer of complexity to the problem. Indeed, Park et al. [10] note
that bus stop selection is often omitted in the VRP literature altogether. One
notable exception to this is due to Schittekat et al. [14], who use a problem based
on the requirements of the Belgian school system; however, their formulation
involves assumptions not considered here, most notably their limitation that
bus stops can only be visited by a maximum of one vehicle in a solution.

The problem considered here is rather generic and was originally supplied by
the third author of this paper, whose organisation is responsible for arranging
school transport in the south of Wales (population 2.2m). Like many countries,
school transport in Wales is organised by local government and then run by pri-
vate bus companies. A few months before the start of the school year, a list of
addresses is compiled containing all school children eligible for school transport
(usually those who are in the school’s catchment area but not within a reasonable
walking distance). Each school is then considered individually, and a set of suit-
able bus routes are drawn up to serve all qualifying students. These routes are
then put out for public tender, with bus companies bidding for the contracts. A
yearly contract for a 70-seat bus typically ranges from GBP£25,000 to £35,000,

Bus Stop
Address

(a) (b)

Fig. 1. (a) Example problem instance; (b) Example solution using k = 3 routes. Bus
stops with dotted outlines are not used (i.e., are not members of V ′

1).

though these costs can increase further for longer journeys and for routes requir-
ing a chaperone (i.e., routes with young children). It is therefore critical to try
to reduce the number of buses used by each school. Note, however, that govern-
ment guidelines also specify that journeys should not be too lengthy (less than
45 minutes for under-11s, and one hour for under-18s), though exceptions can
be made for schools with very large catchment areas.

2 Problem Definition

The school bus routing problem (SBRP) considered here can be more formally
stated using two sets of vertices. The first vertex set V1 contains one school, v0,
and n bus stops v1, . . . , vn. An edge set E1 then contains directed edges between
each u, v ∈ V1 in each direction, making the graph (V1, E1) a complete digraph. A
nonnegative weighting function t(u, v) is also used to define the shortest driving
time between each vertex pair.

The second vertex set V2 defines the set of student addresses, with the weight
s(v) ∈ Z+ of each v ∈ V2 giving the number of students at this address requiring
school transport. As part of the problem, a parameter mw is defined stating the
maximum distance that students are expected to walk from their home address to
a bus stop. A second set of edges is thus used to signify bus stops within walking
distance of each address: E2 = {{u, v} : u ∈ V2 ∧ v ∈ V1 ∧ w(u, v) ≤ mw},
where w(u, v) gives the shortest walking distance between each u ∈ V2 and
v ∈ V1. Also, students living within me distance units of their school are not
considered eligible for school transport; consequently, w(u, v0) ≥ me ∀u ∈ V2.

The graph (V1 − {v0}, V2, E2) therefore constitutes an undirected bipartite
graph with potentially many components, as illustrated in Fig. 1(a). Note that if
there exists an address u ∈ V2 with just one incident edge {u, v} ∈ E2, then the
bus stop v ∈ V1 is compulsory, since it must be included in a solution in order

to satisfy the needs of address u. We can also assume that (V1 − {v0}, V2, E2)
contains no isolated vertices: such vertices in (V1 − {v0}) would give a bus stop
with no address within walking distance and can therefore be removed from the
problem; isolated vertices in V2 define an address with no suitable bus stop,
making the problem unsolvable (in practice, an additional bus stop would need
to be added to serve such an address).

A feasible solution to the SBRP is a set of routes R = {R1, . . . , Rk} in which
each route R ∈ R is a simple path served by a single bus of capacity mc. Each
bus then travels to the school v0 after visiting the terminal vertex on its path.
The following constraints need to be satisfied.

k⋃
i=1

Ri = V ′1 (3)

∀u ∈ V2 ∃v ∈ V ′1 : {u, v} ∈ E2 (4)

s(R) ≤ mc ∀R ∈ R (5)

t(R) ≤ mt ∀R ∈ R (6)

Here, V ′1 is a subset of (V1 − {v0}) that should satisfy Constraint (4): that is,
for each address u ∈ V2, the set V ′1 should contain at least one bus stop within
walking distance. Constraint (5) then specifies that the total number of students
boarding the bus on a route R, denoted by s(R), does not exceed the maximum
bus capacity mc. Similarly, Constraint (6) states that the total journey time t(R)
of each route should not exceed the stated time limit mt. The aim is to then
produce a feasible solution that minimises the number of routes k. An example
solution to this problem is shown in Fig. 1(b). Note that these constraints allow
bus stops to be included in more than one route, as is the case in the diagram.
We call these bus stops multistops, their presence allowing different bus routes
to split and merge as needed.

In our algorithm, our strategy is to relax Constraint (6) while ensuring that
(3)–(5) are always satisfied. In doing so, a number of assumptions are made.
First, students are always assigned to the bus stop in V ′1 closest to their home.
Second, all students are given bus passes that only allow them to travel on one
particular route. This avoids situations where too many students might board a
bus at a multistop, thereby making it too full to serve students at a later non-
multistop. Third, solutions only concern buses travelling to school. After-school
routes are assumed to follow the same paths in reverse, with any discrepancies
in travel time due to one-way streets, etc. not being considered.

Our final assumption involves the use dwell times within a journey. These
measure the time spent servicing each bus stop, including decelerating, opening
doors, loading passengers, and rejoining the traffic stream. Dwell times are influ-
enced by many factors including the number of boarding passengers, the size and
position of the doors, the age of the passengers, and traffic density. Commonly,
simple linear models y = a+bx are used to estimate a dwell time y, where x gives
the number of boarding passengers, b gives the boarding time per-passenger, and
a captures all remaining delays. We follow this approach here:

Definition 1. The journey time t(R) of a route R = (u1, u2, . . . , ul) ∈ R is
calculated,

t(R) =

(
l−1∑
i=1

t(ui, ui+1)

)
+ t(ul, v0) +

(
l∑
i=1

a+ b · s(ui, R)

)
, (7)

where s(ui, R) denotes the number of students boarding the bus on route R at
bus stop ui.

In our case we use the values a = 15 and b = 5 (seconds), which are consistent
with those recommended in [2, 12, 16].

3 Problem Analysis

In this section we now make some observations about the complexity of the
SBRP and its underlying subproblems.

Theorem 1. The task of finding a feasible solution with a minimum number of
routes is NP-hard.

Proof. Let (V1, V2, E2) be a graph such that deg(u) = 1 ∀u ∈ V2. This means
that, for all bus stops v ∈ (V1 − {v0}), (a) v is compulsory and must ap-
pear in at least one route, and (b) the number of boarding students is fixed
at
∑
∀u∈Γ (v) s(u). This also implies the dwell times at each bus stop are fixed.

This special case is equivalent to the NP-hard time-constrained capacitated split-
delivery VRP, itself a generalisation of the NP-hard time-constrained VRP.

A similar proof of NP-hardness considers a generalisation of the above in
which each component in (V1 − {v0}, V2, E2) is a complete bipartite graph. In
this case, all students can be assigned to a bus by including in V ′1 exactly one
bus stop from each component, making the problem a multi-vehicle version of
the NP-hard generalised travelling salesman problem.

As stated, the primary aim in the SBRP is to minimise the number of routes
(buses) being used in a solution. It is therefore desirable to fill buses where
possible, bringing parallels with the NP-hard bin-packing problem [6]. Indeed,
if multistops were not permitted in a solution, then the identification of a so-
lution using k routes while obeying Constraints (3)–(5) would result in a one-
dimensional bin-packing problem with bin capacity mc and item sizes equal to
the number of students boarding at each bus stop. As noted, multistops are per-
mitted in this SBRP meaning that students boarding at a particular bus stop
can be assigned to different routes if needed (or, equivalently, items in the cor-
responding packing problem can be split across different bins). This allows us to
produce a solution R = {R1, . . . , Rk} satisfying constraints (3)–(5) that meets
the lower bound of k = d(

∑n
i=1 s(vi)) /mce, though of course these routes could

be rather long.
From a different perspective, the issue of choosing the subset V ′1 of bus stops

to include in a solution is closely related to the set covering problem. Recall

that set covering involves taking a “universe” U = {1, 2, ..., n} and a set S
whose elements are subsets of the universe, and seeks to find the smallest subset
S′ ⊆ S whose union equals the universe. For example, given U = {1, 2, 3, 4} and
S = {{1}, {1, 2}, {1, 3}, {3, 4}, {4}} the optimal solution is S′ = {{1, 2}, {3, 4}},
containing just two elements.

Definition 2. S′ ⊆ S is a complete covering if and only if
⋃
s∈S′ = U . A

minimal covering is a complete covering in which the removal of any element in
S′ results in an incomplete covering.

According to Definition 2, an optimal solution to a set covering problem is a
minimum cardinality solution among all minimal coverings. Note that while
the task of identifying an optimal solution is NP-hard [6], the identification of
minimal coverings is easily carried out in polynomial time. For example, starting
with the complete covering S′ = S, at each step we might simply remove any
element s ∈ S′ for which (S′ − {s}) is still a complete covering, repeating until
S′ is minimal.

With regards to the SBRP, using the bipartite graph (V1 − {v0}, V2, E2), let
S be the set whose elements correspond to the addresses within walking distance
of each bus stop, S = {Γ (v) : v ∈ (V1 − {v0})}. According to Constraint (4), all
addresses in a feasible solution must be served by a bus stop; hence, the task of
identifying a subset V ′1 ⊆ V1 meeting this criterion is equivalent to the problem
of finding a complete covering of the universe V2 using the set S.

Theorem 2. Consider the SBRP in which multistops are not permitted (i.e.,
Ri ∩Rj = ∅ ∀Ri, Rj ∈ R), and let (V1, E1) be a graph whose pairwise distances
satisfy the triangle inequality. Now let R = {R1, . . . , Rk} be a solution satisfying

Constraints (3)–(5) that has the minimum total journey time
∑k
i=1 t(Ri). Then

the subset of bus stops V ′1 used in R corresponds to a minimal covering S′.

Proof. The removal of any bus stop v ∈ V ′1 corresponds to the removal of the
element Γ (v) in S′ which, by definition, results in an incomplete covering and
violation of Constraint (4). Conversely, the addition of an extra element Γ (v) to
S′ will result in a complete but non-minimal covering; however, this corresponds
to the addition of an extra bus stop v in at least one route in R which, due to
the triangle inequality, will maintain or increase the total journey time of R.

Note that this theorem does not hold when multistops are permitted in a
solution. This is because the addition of an extra bus stop may allow a route to be
shortened by redirecting it from a multistop and then through this new stop. The
triangle inequality is also necessary, though it is acceptable here, being satisfied
by both real-world road maps (where minimum distances/times between each
pair of locations are used) and Euclidean graphs. Indeed, because of the extra
delays incurred by dwell times in the SBRP, this inequality can be strengthened
to ∀u1, u2, u3 ∈ V1, t(u1, u2) + t(u2, u3) > t(u1, u3).

4 Algorithm Description

As noted, our strategy for this problem is to use a fixed number of routes k
and allow the violation of Constraint (6) while ensuring that the remaining con-
straints (3)–(5) are always satisfied. Specialised operators are then used to try to
shorten the routes in a solution such that Constraint (6) also becomes satisfied,
giving a feasible solution. If this cannot be achieved at a certain computation
limit, k is increased by one, and the algorithm is repeated. Initially, k is set to the
lower bound d(

∑n
i=1 s(vi)) /mce. An alternative approach would be to allow our

search operators to alter k and then use its value as part of the objective func-
tion. However, evidence from the literature for similar partition-based problems
suggests the former to usually be a more suitable approach [9, 13].

Our approach is based on iterated local search using a solution space V ′1
that contains all bus stop subsets V ′1 ⊆ V1 corresponding to minimal coverings.
To begin, a member of V ′1 is generated and improved via a local search routine
(Section 4.2). Upon termination of this routine, a new member of V ′1 is then
generated by “kicking” the incumbent solution (Section 4.3), and re-running the
local search. This is repeated until a stopping criterion is met (see Section 5).

4.1 Initial Solution and Cost Function

An initial solution R = {R1, . . . , Rk} is constructed by first generating a subset
of bus stops V ′1 corresponding to a minimal covering. In our case, this is achieved
using the well-known greedy heuristic of Chvatal [3], followed by the removal
of randomly selected bus stops (if necessary) until the covering is seen to be
minimal.

Having generated V ′1 , the number of students boarding at each bus stop
s(v), v ∈ V ′1 is calculated. A variant of the first-fit descending heuristic for bin
packing is then used to assign bus stops to routes. Specifically, at each step, the
bus stop v with the largest number of boarding students is chosen and assigned
to any route (vehicle) seen to have sufficient capacity. If no such route exists,
then the route with the largest spare capacity x is chosen and v is assigned to
this route along with x students. This has the effect of creating a multistop,
since a copy of bus stop v, along with its remaining students will also need to
be assigned to a different route in a subsequent iteration.

The above process produces a solution R obeying Constraints (3)–(5). It is

then evaluated according to an objective function f(R) =
∑k
i=1 t

′(R), where

t′(R) =

{
t(R) if t(R) ≤ mt

mt +W (1 + t(R)−mt) otherwise.
(8)

Here, W introduces a penalty cost for routes whose journey times exceed the
maximum mt. In our case we set W to mt and include the addition of one in the
formula to ensure that a route with t(R) > mt is always penalised more heavily
than two routes with individual journey times of less than mt.

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 v2 v3 u6 u7

v1 u5 u4 u3 v4 v5 v6

R1 =

R2 =

R1 =

R2 =

u1 u2 u3 u4 u5 u6 u7R =

j

u1 u5 u6 u2 u3 u4 u7

(a)

(b)

R =

Fig. 2. Example application of (a) the Section Swap operator (here, the section
u3, u4, u5 has been inverted before insertion into R2); and (b) the Extended Or-opt
operator.

4.2 Local Search

As with many other VRP variants, our local search routine uses a combination of
both inter- and intra-route neighbourhood operators. The following inter-route
operators act on two routes R1, R2 ∈ R. Without loss of generality, assume that
R1 = (u1, u2, . . . , ul1) and R2 = (v1, v2, . . . , vl2).

Section Swap: Take two vertices in each route, ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l1) and
vj1 , vj2 (1 ≤ j1 ≤ j2 ≤ l2), and use these to define the sections ui1 , . . . , ui2
and vj1 , . . . , vj2 within R1 and R2 respectively. Now swap the two sections,
inverting either if this leads to a superior cost (see Fig. 2(a)).

Section Insert: Take a section in R1, defined by ui1 and ui2 as above, together
with an insertion point j (1 ≤ j ≤ l2 + 1) in R2. Now remove the section
from R1 and insert it before vertex vj in R2, inverting the section if this
leads to a better cost. If j = l2 + 1, add the section to the end of R2.

Note that these inter-route operators may result in too many students being
assigned to R1 or R2, leading to a violation of Constraint (5). In our case, such
moves are disallowed. Since multistops are permitted, it is also possible that
they will result in a route containing a vertex v ∈ V ′1 more than once. Since each
route must be a simple path, these need to be deleted. Assuming without loss of
generality that a new route is to be produced by inserting the section ui1 , . . . , ui2
(possibly inverted) into a route R = (v1, v2, . . . , vl2), and that some vertex in
the section is already present in R, this is done by simply removing the relevant
vertex from the section and reassigning its students to the other occurrence of
the vertex in R.

Our three intra-route neighbourhood operators act on a single route R =
(u1, u2, . . . , ul) ∈ R. Their application does not affect the satisfaction of Con-
straints (3)–(5), nor do they introduce duplicate vertices into a route.

Swap: Take two vertices ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l) in R and swap their positions.
2-opt: Take two vertices ui1 , ui2 (1 ≤ i1 ≤ i2 ≤ l) and invert the section

ui1 , . . . , ui2 within R.
Extended Or-opt: Take a section defined by ui1 and ui2 as above, together

with an insertion point j outside of this section (i.e., 1 ≤ j < i1 or i2 + 1 <
j ≤ l+1). Now remove the section and insert it before vertex uj . If j = l+1,

then add the section to the end of the route. Also, invert the section if this
leads to a better cost (see Fig. 2(b)).

Note that, together, these five operators generalise a number of neighbour-
hood operators commonly featured in the literature. For example, our two inter-
route operators include and extend the six outlined by Silva et al. [15] for the
capacitated VRP. Similarly, they extend the basic VRP-based neighbourhood
operators used with the bus routing problem considered in [14]. Our Extended
Or-opt operator also generalises the more basic Or-opt, which only involves sec-
tions of up to three vertices [1].

Here, our local search procedure follows the steepest descent methodology: in
each cycle all moves in all neighbourhoods are evaluated, and the move offering
the largest reduction in cost is performed, breaking ties randomly. The process
halts when no improving moves are identified. Note that the number of moves
considered in each cycle is of O(m4), where m =

∑k
i=1 |Ri| is the size of the

incumbent solution. Though seemingly quite expensive, with appropriate book-
keeping the changes in cost caused by individual applications of these neigh-
bourhood operators can always be calculated in constant time. Consequently,
this growth rate was not found to be particularly restrictive.

4.3 Generating New Minimal Coverings via a Kick Operator

While our local search routine is able to alter and improve the cost of a solution,
it does not alter the subset of bus stops being used V ′1 . One way of doing this, as
suggested in [14], would be to either swap a bus stop in a route with a currently
unused bus stop, or simply remove a bus stop from a route altogether. However,
besides not allowing the number of bus stops in V ′1 to increase, this is unsuitable
here because it fails to ensure the satisfaction of Constraint (4).

Given a minimal subset of bus stops V ′1 , our operator first removes a randomly
chosen non-compulsory bus stop v ∈ V ′1 , followed by x further non-compulsory
bus stops, leaving a partial covering.4 A different minimal covering is then con-
structed by selecting bus stops from the set (V1−{v}) using a randomised version
of Chvatal’s heuristic that, at each stage, arbitrarily selects any bus stop that
will serve some currently unserved students, until all students are served. If nec-
essary, randomly selected bus stops are then also removed until the covering is
minimal.

Having produced a new minimal subset of bus stops V ′′1 6= V ′1 , the current
solution R needs to be repaired to reflect these changes. To do this, the closest
bus stops in V ′′1 to each address are first recalculated and bus stops from the set
(V ′1−V ′′1) are deleted from routes in R. Instances of multistops are also removed
at this point so that each bus stop occurs at most once in R. Randomly selected
bus stops are then also removed from routes in R if their number of students
exceeds the maximum capacity mc. Finally bus stops in V ′′1 not yet in R are

4 In our case a value for x is selected randomly according to a binomial distribution
X ∼ B(|V ′

1 |, 3/|V ′
1 |).

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

mw

E
x
tr

a
 R

o
u
te

s

mt

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

mw

E
x
tr

a
 R

o
u

te
s

mt

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

mw

E
x
tr

a
 R

o
u
te

s

mt

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

mw

E
x
tr

a
 R

o
u
te

s

mt

Fig. 3. Number of extra buses required by solutions for various values of mt (in min-
utes) and mw (in miles) for 25, 50, 100 and 250 bus stops respectively. Each point is
the mean across five problem instances.

assigned to routes using the bin packing heuristic from Section 4.1. This results
in a modified solution R obeying Constraints (3)–(5) as desired.

5 Experimentation

Our experiments consider the issues that affect the number of extra buses re-
quired in a solution compared to the lower bound of d(

∑n
i=1 s(vi)) /mce. To do

this, artificial problem instances were generated by placing a school at the centre
of a circle with radius r > me. Bus stops were then randomly placed within this
circle, followed by a set of addresses, ensuring that each address was at least me

distance units from the school, but within mw distance units of at least one bus
stop. Distances between vertices are assumed to be Euclidean.

Fig. 3 shows the effect of altering (a) the maximum walk distance mw in
our problem generator and (b) the maximum journey time mt permitted by our
algorithm, using 25, 50, 100 and 250 bus stops. In all instances we used a radius
r of 15 miles and buses were assumed to travel at 30mph—hence all bus stops
are within 30 minutes of the school. The number of addresses was set to 400,
with the number of students boarding each bus stop s(v) selected randomly from
the set {1, 2, 3, 4}, giving approximately 1,000 students per-instance. Finally, the
maximum bus capacity mc and minimum eligibility distance me were set to 70
and 3 miles respectively, with ten seconds of execution time permitted for each
value of k. (The algorithm was written in C++ and executed on a 3.3 GHtz
Windows 7 machine with 8 GB RAM.)

Fig. 3 demonstrates that more routes (buses) are needed when both the
maximum journey times mt and the maximum walking distances mw are low.

For low values for mt this is quite natural: shorter journey limits imply the need
for more routes in feasible solutions. On the other hand, for low values of mw

the instance generator clusters addresses tightly around bus stops; consequently,
nearly all bus stops are compulsory, making the problem very similar to that
described in Theorem 1. This means that any savings that could be achieved
by only using a subset of the bus stops are not available, creating a need for
additional routes. We also see that these effects increase for larger numbers of
bus stops where, for low values of mw in particular, more bus stops will need to
be visited.

Considering multistops, we found that these occur more frequently when it is
advantageous or necessary to assign large numbers of students to individual bus
stops. This occurs for high values of mw, where students are able to walk larger
distances to bus stops (implying fewer bus stops in V ′1), or when the number
of bus stops is small. From a bin packing perspective, more students per-stop
implies larger items to pack into the bins, meaning that more of these items will
need to be “split”, resulting in a multistop.

As we might expect, the number of local optima visited by the algorithm
within the ten second time limit (and therefore the number of kicks applied) is
heavily influenced by the computational requirements of the local search rou-
tine, which is itself influenced by the size of a solution

∑k
i=1 |Ri|. To illustrate,

for values of 25, 50, 100 and 250, these figures were seen to be approximately
250,000, 47,000, 4,000 and 60 respectively, suggesting that longer run times may
be required for problem instances involving larger solutions.

6 Conclusions and Further Work

This paper has analysed a real-world school bus routing formulation that builds
on previous models proposed in the literature by including bus stop selection,
multistops, and dwell times. In doing so, relationships have been drawn with
three well-known combinatorial optimisation problems.

Our experiments have demonstrated that our algorithm is often able to find
solutions using the lower bound of d(

∑n
i=1 s(vi)) /mce routes. This is particularly

so for instances where only a small proportion of bus stops need to be used, such
as when the maximum walking distance of students is set quite high. Note,
however, that in cases where all bus stops need to be used, our proposed kick
operator has no effect, so it may be be better to focus on extending the local
search operator by, for example, including a tabu element.

As noted, the solution space in our current algorithm is restricted to bus
stop subsets that correspond to minimal set coverings. However, according to
Theorem 2, our use of multistops means that optimal solutions to a particular
problem instance may not occur within this space. Future research will determine
whether this restriction is beneficial, or whether it is preferable to use the larger
space of all set coverings.

This paper has limited the empirical analysis to artificially generated prob-
lems; however, our research is ongoing and we are currently using this same

method with large real-world problems generated using web mapping services.
One feature of our current solutions to these problems is that, by ensuring the
set of used bus stops corresponds to a minimal covering, large numbers of stu-
dents are often assigned to a relatively small number of bus stops, rather than
using more convenient bus stops that are closer to their home. We expect further
improvements to the service might therefore be achieved by sometimes allowing
additional bus stops to be used, though perhaps without increasing the number
of routes unduly.

References

1. G. Babin, S. Deneault, and G. Laporte. Improvements to the Or-opt heuristic for
the symmetric travelling salesman problem. Journal of the Operational Research
Society, 58(3):402–407, 2007.

2. R. Bertini and A. El-Geneidy. Modeling transit trip time using archived bus dis-
patch system data. Journal of Transportation Engineering, 130(1), 2004.

3. V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

4. G. Dantzig and J. Ramser. The truck dispatching problem. Management Science,
60(1):80–91, 1959.

5. B. Eksioglu, V. Volkan, and A. Reisman. The vehicle routing problem: A taxonomic
review. Computers and Industrial Engineering, 57(4):1472–1483, 2009.

6. M. Garey and D. Johnson. Computers and Intractability - A guide to NP-
completeness. W. H. Freeman and Company, San Francisco, first edition, 1979.

7. G. Laporte. Fifty years of vehicle routing. Transportation Science, 43:408–416,
2009.

8. A. Letchford, J. Lysgaard, and R. Eglese. A branch-and-cut algorithm for the
capacitated open vehicle routing problem. Journal of the Operational Research
Society, 58:1642–1651, 2007.

9. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer,
2015.

10. J. Park and B. Kim. The school bus routing problem: A review. European Journal
of Operational Research, 202:311–319, 2010.

11. V. Pillac, M. Gendreau, C. Guéret, and A. Medagila. A review of dynamic vehicle
routing problems. European Journal of Operational Research, 225:1–11, 2013.

12. Transit Cooperative Research Program. Transit Capacity and Quality of Service
Manual, 3rd edition. isbn: 978-0-309-28344-1.

13. H. Qin, W. Ming, Z. Zhang, Y. Xie, and A. Lim. A tabu search algorithm for the
multi-period inspector scheduling problem. Computers and Operations Research,
59:78–93, 2015.

14. P. Schittekat, J. Kinable, K. Sörensen, M. Sevaux, F. Spieksma, and J. Springael. A
metaheuristic for the school bus routing problem with bus stop selection. European
Journal of Operational Research, 229:518–528, 2013.

15. M. Silva, A. Subramanian, and L. Satoru Ochi. An interated local search heuristic
for the split delivery vehicle routing problem. Computers and Operations Research,
53:234–239, 2015.

16. C. Wang, Y. Zhirui, W. Yuan, X. Yueru, and W. Wei. Modeling bus dwell time
and time lost serving stop in China. Journal of Public Transportation, 19(3):55–77,
2016.

