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Abstract—We describe our recent work on the problem of
producing fixed-length cycles in edge-weighted graphs. We give
two exact methods for this NP-hard problem and briefly
consider their scaling-up characteristics.
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I. INTRODUCTION

In this research we consider the combinatorial problem of
forming fixed-length cycles in edge-weighted graphs. These
cycles must also start and end at a specific, user-defined vertex.
In transport, this problem is relevant in the design of exercise
routes and cycling tours [6]. Applications also arise in network
visualisation [9], protein analysis [8], and drawing metabolic
pathways [1].

The problem is formally defined as follows.
Definition 1: Let G = (V,E) be a simple edge-weighted

graph with n vertices and m edges. In addition, let s ∈ V
define a source vertex, k define a desired length, and w(u, v)
denote the weight (length) of each edge {u, v} ∈ E. The
k s-cycle problem involves identifying a cycle C = (s =
u1, u2, . . . , ul = s) that starts and ends at s, and whose length
L(C) =

∑l−1
i=1 w(ui, ui+1) minimises ∥k − L(C)∥.

We recall that a cycle in a graph is a connected subgraph in
which all vertices have a degree of exactly two. We also use
the term s-cycle here to denote a cycle containing the vertex
s. Two examples are shown in Fig. 1

Little work seems to have been conducted on the prob-
lem of finding fixed-length cycles in edge-weighted graphs.
Various complexity results are known, however. The shortest
s-cycle can be computed in polynomial time [4]; however,
computing longest s-cycles is NP-hard, both for weighted
and unweighted graphs [2]. Similarly, shortest paths between
pairs of vertices can be identified in polynomial time [3], while
the problem of finding longest paths is NP-hard [5] (though
certain topologies such as trees and directed acyclic graphs
can be solved in polynomial time). The problem of counting
the number of s-t-paths and s-cycles in a graph is also known
to be #P-complete [7].

As a generalisation of the longest s-cycle problem, the
k s-cycle problem is also NP-hard. That said, it is still
useful to investigate suitable exact algorithms for this problem,
particularly for use with small- and medium-sized problem
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Fig. 1. A planar graph G comprising n = 100 vertices placed randomly in
a 10, 000× 10, 000 square. Edge weights correspond to Euclidean distances.
The two s-cycles give optimal solutions for k = 7000 and k = 30, 000 using
the indicated source vertex.

instances. Two such algorithms are presented in the following
sections, one based on integer programming (IP) and one that
uses Yen’s algorithm [10].

II. IP FORMULATION

Our IP formulation is adapted from a recent model for
finding longest s-cycles in unweighted graphs [2]. Given
G = (V,E), let V = {v1, v2, . . . , vn}, and assume (w.l.o.g.)
that s = v1. The adjacencies and weights of G are now
stored in the matrices An×n and Wn×n such that Aij = 1 if
{vi, vj} ∈ E (and Aij = 0 otherwise); and Wij = w(vi, vj)
if {vi, vj} ∈ E (and Wij = ∞ otherwise).

In this formulation, a cycle is stored using binary variables
Xij , where Xij = 1 signifies that a transition is made from
vi to vj in the cycle, and Xij = 0 otherwise. The objective is
to now

minimize:

∥∥∥∥∥∥k −
n∑

i=1

n∑
j=1

AijWijXij

∥∥∥∥∥∥ (1)



subject to:

Xij ≤ Aij ∀i ∈ {1, . . . , n}
∀j ∈ {1, . . . , n} (2)

n∑
i=1

Xij −
n∑

i=1

Xji = 0 ∀j ∈ {1, . . . , n} (3)

n∑
i=1

Xij +

n∑
i=1

Xji ≤ 2 ∀j ∈ {1, . . . , n} (4)

n∑
i=1

n∑
j=1

AijXij ≥ 3 (5)

0 ≤ Yij ≤ (n− 1)Xij ∀i ∈ {2, . . . , n},
∀j ∈ {1, . . . , n} (6)

2

n∑
j=1:
j ̸=i

Yij − 2

n∑
j=2:
j ̸=i

Yji−

n∑
j=1:
j ̸=i

Xij −
n∑

j=2:
j ̸=i

Xji = 0 ∀i ∈ {2, . . . , n}.

(7)

Here, the term
∑n

i=1

∑n
j=1 AijWijXij in (1) gives the

length of the cycle, while (2) ensures that Xij = 1 if and
only if {vi, vj} ∈ E. Constraints (3) and (4) ensure that a
vertex vi is in the cycle only when it has exactly one edge
entering and one edge leaving, else it has no such edges.
Constraint (5) also ensures that cycles contain at least three
edges. Finally, (6) and (7) make use of the auxiliary variables
Yij ∈ R. These represent flows on the edges and are used to
ensure that solutions comprise a single s-cycle (as opposed to
several disjoint cycles) [2].

III. YEN’S ALGORITHM

Our second exact method for this problem operates by first
adding a vertex s′ to G and setting its neighbouring vertices
to those of s. Solving the k s-cycle problem now involves
identifying an s-s′-path of length k that has at least three
edges.

A suitable algorithm for this task is due to Yen [10].
Yen’s algorithm determines the K shortest paths between any
two given vertices and operates by finding the shortest path,
followed by the second shortest path, the third shortest path,
and so on. For our current problem Yen’s algorithm needs to
be executed until an s-s′-path of length greater or equal to k
is observed. The generated s-s′-path whose length is closest
to k (and that contains at least three edges) then corresponds
to an optimal solution.

Note that the complexity of Yen’s algorithm is O(Kn(m+
n lg n)), where O(m + n lg n) is the asymptotic complexity
of Dijkstra’s shortest path algorithm. This means that larger
values for K lead to increased run times. For this current
application, K is not known beforehand so the algorithm must
iterate until a suitable s-s′-path is identified. This can bring
scaling-up issues.

Fig. 2. Performance of the IP method across twenty 100-vertex Euclidean
planar graphs for various values of k. Success rates give the proportion of
instances solved to optimality within a 300-second time limit. CPU times give
the mean solution times across successful runs.

IV. PRELIMINARY RESULTS AND DISCUSSION

Figure 2 gives some preliminary results for our IP method
under a five-minute time limit.1 For these 100-vertex graphs,
most values of k are solved to optimality within one minute.
In contrast, our approach using Yen’s algorithm was less
favourable, with optimality never being achieved within the
time limit for values of k > 10000.

In our experiments, larger planar graphs of more than 1000
vertices have also been solved to optimality using these IP
methods, though success rates seem to drop quite quickly for
larger values of k. To deal with these scaling issues, our current
work is concerned with developing methods based on local
search. We are also considering differing graph topologies
and methods of problem decomposition. Finally, we are also
extending these methods for use with the k cycle problem.
Here the aim is to find any cycle of length k in a graph, as
opposed to an s-cycle.
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