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Abstract. University Course Timetabling-Problems (UCTPs) involve the 
allocation of resources (such as rooms and timeslots) to all the events of a 
university, satisfying a set of hard-constraints and, as much as possible, some 
soft constraints. Here we work with a well-known version of the problem 
where there seems a strong case for considering these two goals as separate 
sub-problems. In particular we note that the satisfaction of hard constraints 
fits the standard definition of a grouping problem. As a result, a grouping 
genetic algorithm for finding feasible timetables for “hard” problem instances 
has been developed, with promising results. 

1 Introduction 

The university course-timetabling problem (UCTP)1 is the task of assigning the 
events of a university (lectures, tutorials, etc) to rooms and timeslots in such a way 
as to minimise violations of a predefined set of constraints. This version of the 
problem is already well known and in the last few years has become somewhat of a 
benchmark in a problem area that is notorious for having a multitude of different 
definitions. Specifically, given a set of events E, the task is to assign every event a 
room from a set R and timeslot from a set T (where |T|=45, comprising 5 days of 
nine timeslots). The problem is made taxing by the fact that various pairs of events 
clash - i.e. they can’t be scheduled in the same timeslots because one or more 
student may be required to attend them both, making it analogous to the well known 
NP-hard graph colouring problem. There are also other complications - not all 
rooms are suitable for each event (it may be too small to accommodate the students 
or might not have the facilities the event requires), and cases of double booking 
(where a particular room is given more that one event in a timeslot) are strictly 
disallowed. A violation of any of these three so-called hard-constraints makes a 
timetable infeasible. The total number of possible assignments (timetables) is 
therefore (|R|.|T|)|E| and it can be easily appreciated that in anything but trivial cases, 
the vast majority of these contain some level of infeasibility. 

In addition to finding feasibility, it is usual in timetabling problems to define a 
number of soft constraints. These are rules that, although not imperative in their 
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and example problem instances are at [19]. 



satisfaction, should be avoided, if possible, in order to show some consideration to 
the people who will have to base their working lives around it. In this particular 
UCTP these are (1) no student should be scheduled to sit more than three events in 
consecutive timeslots on the same day, (2) students should not be scheduled just one 
event in a day and (3) events should not be scheduled in the last timeslot of a day. 

This UCTP has been studied by Rossi-Doria et al. [14] as a means for comparing 
different metaheuristics. A conclusion of this substantial work is that the 
performance of any one metaheuristic with respect to satisfying hard constraints and 
soft constraints might be different; i.e. what may be a good approach for finding 
feasibility may not necessarily be good for optimising soft constraints. The authors 
go on to suggest that hybrid algorithms comprising two stages, the first to find 
feasibility, the second to optimise soft constraints whilst staying in feasible regions 
of the search space might be the more promising approach. This hypothesis was 
reinforced when the International Timetabling Competition [19] was organised in 
2002 and people were invited to design algorithms for this problem - as it turned out, 
the best algorithms presented used this two-stage approach [1, 4, 13], using various 
constructive heuristics to first find feasibility, followed by assorted local 
improvement algorithms to deal with the soft constraints.  

It seems then that we have a case for this two-stage approach, but although there 
is substantial work pertaining to the optimisation of soft constraints whilst 
preserving feasibility [1, 4, 11, 13], there is still a major issue of concern: How we 
can ensure that we have a good chance of finding feasibility in the first place? 
Indeed, this (sub)problem is still NP-hard [10] and should not be treated lightly. 
Therefore in “harder” instances, where methods such as those in [1], [4], [11] and 
[13] might start to fail, some sort of stronger search algorithm is required. 

1.1 Grouping Genetic Algorithms and their Applicability for the UCTP 

Grouping genetic algorithms (GGAs) may be thought of as a special type of genetic 
algorithm specialised for grouping problems. Falkenauer [9] defines a grouping 
problem as one where the task is to partition a set of objects U into a collection of 
mutually disjoint subsets ui of U, such that »ui=U and ui…uj=«, i≠j, and according 
to a set of problem-specific constraints that define valid and legal groupings. The 
NP-hard bin packing problem is a well used example - given a finite set of “items” 
of various “sizes”, the task is to partition all of the items into various “bins” (groups) 
such that (1) the total size of all the items in any one bin does not exceed the bin’s 
maximum capacity and (2) the number of bins used is minimised (a legal and 
optimal grouping respectively). 

It was bin packing that was first used in conjunction with a GGA by Falkenauer 
[7]. Here, the author argues that when considering problems of this ilk, the use of 
classical genetic operators in conjunction with typical representation schemes2 (as 
used for example with timetabling in [3] and [14]) are highly redundant due to the 
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group that object i is in, and the indirect order-based representations that use a decoder to 
build solutions from permutations of the objects. 



fact that the operators are object-oriented rather than group-oriented, resulting in a 
tendency for them to recklessly break up building blocks that we might otherwise 
want promoted. Falkenauer concludes that when considering grouping problems, the 
representations and resulting genetic operators need to be defined such that they 
allow the groupings of objects to be propagated, as it is these that are the innate 
building blocks of the problem, and not the particular positions of any one object on 
its own. 

With this in mind, a standard GGA methodology is proposed in [9]. There has 
since been applications of these ideas to a number of grouping problems, with 
varying degrees of success. Examples include the equal piles problem [8], graph 
colouring [5, 6], edge colouring [12] and the exam-timetabling problem [6]. To our 
knowledge, there is yet to have been an application of a GGA towards a UCTP3, 
although it is fairly clear that, at least for finding feasibility, it is a grouping problem 
- in this case, the set of events represents the set of objects to partition and the 
groups are defined by the timeslots. A feasible solution is therefore one where all of 
the |E| events have been partitioned into |T| feasible timeslots t1,…,t|T|, where a 
feasible timeslot ti 1≤i≤|T| is one where none of the events in ti conflict, and where 
all the events in ti can be placed in their own suitable room. 

Note that soft constraints are not considered in this definition. There are two 
reasons for this. Firstly, in this UCTP violations of soft constraints (1) and (2) arise 
as a result of factors such as timeslot ordering and the occurrence of sequences of 
events with common students across adjacent timeslots. Thus they are in 
disagreement with the more general definition of a grouping problem [9]. Secondly, 
if we were to take soft constraints into account at this stage they would need to be 
incorporated into the fitness function (which we’ll define in section 2.1). But taking 
soft-constraints into account, while at the same time searching for feasibility (as 
used in [3] and [14] for example), might actually have the adverse effect of leading 
the search away from attractive (and 100% feasible) areas of the search space, 
therefore compromising the main objective of the algorithm. 

2 The Algorithm 

Similarly to the work presented in [4], [11], [15] and [17], in our approach each 
timetable is represented by a two dimensional matrix M where rows represent rooms 
and columns represent timeslots; thus if M(a,b)=c, then event c is to occur in room a 
and timeslot b. If, on the other hand, M(a,b) is blank, then no event is to be 
scheduled in room a during timeslot b. In our method, the timeslots are always kept 
feasible and the number of timeslots in each timetable is allowed to vary. We 
therefore open new timeslots when events cannot be feasibly placed in any existing 
one, and the aim of the algorithm is to reduce this number down to the required 
amount |T| (remembering that in this case |T|=45).  
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problems due to various differences that we will not go into here, but are detailed in [16] 
for example. 



Fig. 1 shows how we perform recombination to construct the first offspring 
timetable using parents P1 and P2, and randomly selected crossover points x1,…,4. To 
form the second offspring the roles of the parents and the crossover points is 
reversed. The mutation operator we use follows a typical GGA mutation scheme - 
remove a small number (specified by the mutation rate mr) of randomly selected 
timeslots from a timetable and reinsert the events contained within them using the 
rebuild scheme (see below). We also use an inversion operator that randomly selects 
two columns in the timetable and swaps all the columns between them.  

An initial population of timetables is constructed using the recursive rebuild 
scheme defined below. The same scheme is also used to reconstruct partial 
timetables that occur during recombination and mutation (with subtle differences 
regarding the breaking of ties - see table 1. Note too that event selection for 
mutation-rebuild is also different). The heuristics we use with this scheme are 
variations on those used in [1] and [11] and have already shown themselves to be 
powerful with this sort of problem.  

Specifically, the rebuild scheme takes an empty or partial timetable tt and a set U 
of unplaced events. It then assigns all u∈U a room and timeslot to produce a 
complete timetable, opening new timeslots where necessary. Note that for the initial 
population generator U=E. Let S represent the set of timeslots in tt and let Ρ 
represent the set of places in tt - i.e. Ρ=R×S. 
 
Rebuild (tt, U) 
 

1. If U = « end, else if (|S|<|T|) open (|T|-|S|) new slots, else open | |
| |

U
R   new slots. 

2. PlaceEvents (tt, U). 
3. Rebuild (tt, U). 
 
PlaceEvents (tt, U) 
 

1. Pick u∈U with the smallest number of possible places to which it can be feasibly 
assigned in tt. Break ties with H1 (see table 1). For mutation, just choose any u 
randomly. 

2. Pick the feasible place for u in tt that the least number of other events in U want. 
Break ties with H2 (see table 1). 

3. Remove u from U and insert it into tt at the chosen place. 
4. If there are still events in U with feasible places, go back to step 1. 
 

 

x4 x3 

x1 x2 

P2 

P1 
unplaced 

(4) Insert 
unplaced events 
using rebuild 
scheme. 

(3) Remove all slots from P1 
(the white parts) that cause 
duplicate events. Track the 
events that become unplaced.

(1) Copy P1 and P2 and 
choose X-over points 

(2) Inject chunk 
from between x3

and x4 at x1 

 
Fig. 1. How recombination is performed in this algorithm 



2.1 Judging Criteria and the Fitness Function 

When looking at the final output of the algorithm, it seems reasonable to assume that 
what we are ultimately interested in is the timetable’s distance to feasibility, if 
indeed feasibility has not been found. In timetabling this can be measured in various 
ways such as the level of student inconvenience, the number of broken constraints, 
the number of extra timeslots used, etc. Of course, what is chosen depends first and 
foremost on user preference. In our approach we choose to use the number of 
unplaced events. This is calculated by doing the following: Recall that |T| represents 
the target number of timeslots that we wish to use (i.e. 45), and |S| represents the 
current number of timeslots. Additionally, let Fi indicate the number of events 
placed in timeslot i, where 1≤i≤|S|, and let |S|’ represent the number of extra 
timeslots being used i.e. |S|’=(|S|-|T|). The distance to feasibility is the total number 
of events in the |S|’ timeslots to which Fi is minimal – i.e. the |S|’ timeslots with the 
least events in them. 

During the algorithm’s run however, the distance to feasibility need not be the 
only measure that we use to determine fitness. Indeed, if other information is present 
then it makes sense to use it if it is thought that it can help guide the search towards 
more promising areas of the search space. Consequently, we use a fitness function 
somewhat akin to the one proposed for graph colouring by Eiben et al. [5]: we 
calculate the number of extra timeslots |S|’ being used and the distance to feasibility. 
The fitness function is the total of these two values. 

 
 Heuristic - H1 Heuristic - H2 
Recombination Choose the event that conflicts 

with the most others 
Choose the place that 
defines the emptiest slot 

Initial population Choose randomly Same as above 
Mutation N/A Choose randomly 

Table 1. Showing the various ways that ties are broken in the rebuild scheme for the three 
genetic operators (described in section 2). Note that H1 for mutation is not applicable. As 
explained in the text, for this operator the order that unplaced events are inserted back into the 
timetable is entirely random. 

3 Experimental Analysis 

We created sixty test instances using an instance generator, which we separate into 
three classes: small, medium and large4. It is known that all have at least one feasible 
timetable. These instances were created with no reference to the proposed GGA but 
are deliberately intended to be troublesome for finding feasibility. This was mainly 
achieved by simple experiments whereby instances were created and run on two 
existing constructive algorithms [1, 11] that attempt to use stochastic heuristics to 
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to 425 and |R| = 10 or 11. For the large instances |E| = 1000 to 1075 and |R| = 25 to 28. 
Other parameters for the instances can be found online at the URL at the end of section 4. 



place all events feasibly. With many instances, these algorithms could only place 
about 80% of events (and sometimes even less) before running out of ideas and 
getting totally stuck. We therefore tended to take these as the instances to use in our 
experiments. Indeed, between them these algorithms could not find feasibility in 52 
of the 60 instances. 

For all the experiments we used a PC Pentium 4 2.40GHz with 512MB RAM. 
For the evolution scheme, a steady-state population of size ps was used: at each step, 
two parents are selected using binary tournament selection with parameter ts. Two 
offspring are then created with recombination rate rr. These are then mutated and 
inserted back into the population, in turn, over the least fit individual. If there is 
more than one least-fit individual we choose between these randomly. Also at each 
step, ir individuals are also chosen randomly and inversion is applied. During the 
run we keep track of the fittest solution found so far according to the fitness function 
defined in section 2.1. This is the algorithm’s final output. In all experiments we set 
ps=50, ts=0.9, mr=3, and ir=4.  

For our first set of experiments5 we tested the algorithm on all sixty problem 
instances. We introduced time limits of 30, 200 and 800 seconds for the instance sets 
small, medium and large respectively, and set the recombination rate to 0.5. In this 
case, even with the strict time limits and the fact that we performed minimal 
parameter tuning, the algorithm found feasibility in 23 of the 60 instances – fifteen 
more than the algorithms presented in [1] and [11]. Additionally, there is the 
obvious advantage that this new algorithm is able to produce a number of different 
solutions in the same run.  

In the experiments we also noticed that, in some cases (10 in small, 3 in medium 
and 1 in large), solutions were actually found in the initial populations! Although 
this might lead the prudent reader to suspect that the test instances are suspiciously 
easy, we argue that if anything this just goes to highlight the strength of our rebuild 
heuristics. Indeed this could be somewhat expected - similar heuristics have already 
shown themselves able to find feasibility in one go with other well-known instances 
[1, 11] and so there is no reason why they shouldn’t occasionally do the same here. 

Our next experiments attempted to address an issue that we consider to be of 
particular interest with this algorithm - the consequences that the recombination 
operator has on the number of new individuals that can be produced within the time 
limit, and the effects that this has on movement in the search space. It is well 
acknowledged that the general goal of recombination is to aid the search by allowing 
useful building blocks from multiple parents to be combined into new, different and 
hopefully fitter offspring. However, as can be imagined in this algorithm, 
recombination is more expensive than mutation, so if it is not doing its intended job 
at an acceptable level then its presence is questionable. If, on the other hand, 
recombination is aiding the search, there will still be a trade-off between the amount 
of recombination that is used, and the resultant number of new individuals that can 
be produced within the time limit.  

To investigate this, we conducted experiments using different recombination rates 
with all other parameters, including the time limits, remaining as previously defined. 
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For all problem instances we ran five separate trials using recombination rates 0.0, 
0.25, 0.5, 0.75 and 1.0.  

Table 2 shows clearly that as we increase the recombination rate, the mean 
number of new individuals produced within the time limit falls. The effect that this 
characteristic has on the resultant movements in the search space within the time 
limit is illustrated in fig 2. This graph shows the mean fitness of populations for each 
of the twenty medium instances, over time. The effect of using a high level of 
recombination is shown well here - a rate of 1.0 for instance, at least for the first half 
of the run, gives the slowest progression through the search space per second, whilst 
a rate of 0.0 offers the most. Clearly, if the time limits for these instances were 
shorter, then using no recombination would seem the more sensible choice. What is 
also noticeable however is that the higher rates of 0.75 and 1.0 still seem to be 
making positive movements in the search space towards the end of the runs, whilst 
the other three rates (which use less recombination) seem to be levelling off. Indeed, 
the lines for both 0.75 and 1.0 both cross the other three towards the end of the run 
and, if the time limit were increased, look like they could go on to make further 
positive movements. 

 
 Rr=0.0 Rr=0.25 Rr=0.5 Rr=0.75 Rr=1.0 
Small 24382 19750 14542 11600 7662 
Medium 62752 45658 32262 26160 10454 
Large 67594 38424 18148 4072 1052 

Table 2. Showing the mean number of new individuals the algorithm is able to produce 
within the specified time limits for the different recombination rates. 
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Fig. 2.  Mean fitness of populations for the twenty medium instances, per second, for the 

different recombination rates. 

This is exactly what is shown in fig 3. Here, rather than concern ourselves with CPU 
time, we look at the way the fitness changes according to the number of timetable 
evaluations performed. This measure is frequently considered instead of CPU time 



when looking at the performance of an evolutionary algorithm [3] as evaluation can 
often be the most expensive operation. Indeed, timetabling problems in particular 
are prone to this, as often there might be an abundance of different real-world 
constraints that need to be checked, resulting in very complex and expensive 
evaluation functions. Although this is not the case for the relatively simple UCTP 
used here, this still seems a reasonable criterion to study, as it might be the case that 
as we add extra realism to the problem, the fitness function might become so 
intricate that the relative expense of the recombination operator becomes negligible. 
In this graph then, it can be seen quite clearly that as we increase the recombination 
rate, both the amount of positive movement through the search space per evaluation 
and the quality of the final solution increases (reflected in the steepness of the curve 
and the lower levelling-off point respectively). It can also be seen that as we 
decrease the recombination rate, these characteristics lessen in a uniform fashion. 
Thus it would seem that recombination is indeed doing its intended job. 
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Fig. 3. Mean fitness of populations for the twenty medium instances, per evaluation, for the 

different recombination rates. 

4 Conclusions and Further Work 

We have presented an algorithm for university-course timetabling that combines 
powerful constructive heuristics with GGA methodology. To our knowledge this is 
the first such algorithm aimed at this problem domain. Our initial experiments with 
sixty new “hard” problem instances have shown that results are promising with 
regards to the number of cases where we have found feasibility, although we do not 
yet claim these results to be state of the art. Further experiments in this paper have 
shown that the use of recombination does seem to aid the search towards better 
solutions, but if the time limit imposed is highly restricted it should probably be 
used in smaller amounts. Finally we round off this paper with some remarks about 
possible future work and various other issues that might be of interest. 



A place where some improvements might be found is the fitness function. 
Currently the search landscape defined by our function can sometimes seem a little 
stepped in nature - especially when we are close to finding feasibility. In these cases 
the jump from near-feasibility to full-feasibility might well be a lucky one. 
However, other smoother fitness functions that concentrate more on favouring 
solutions with good combinations of events in timeslots might show to improve the 
search. We have recently been conducting experiments using the fitness function  
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where Fi is as defined in section 2.1. Although this is more archetypal of this type of 
algorithm [6, 7, 8] it actually seems to give significantly worse results than our 
current function under the same test conditions. Further work might reveal other 
promising avenues.  

Other improvements may also be seen through the introduction of some sort of 
smart-mutation [3] and/or various local search operators [14]. Whether or not these 
will improve the algorithm’s results is also pending further work. 

It is also worth noting that not all cases of UCTPs will have these same classical 
grouping characteristics as this one. In some problem definitions, all timeslots might 
not be the same because certain resources might be unavailable in certain predefined 
timeslots. Secondly, some cases may incorporate hard-constraints that pan across the 
timeslots such as the specification that one event must take place before another etc. 
in which case the ordering of the timeslots might also become important.  

Finally, and perhaps most noticeably, we have not addressed for the time being 
the important task of optimising the soft constraints. The two-stage approach that we 
support here dictates that only once feasibility is found should soft constraints be 
considered. However, whether effective searches can still be made in the more 
restricted, feasible-only search space for these “hard” instances is yet to be 
investigated. In the meantime, the sixty problem instances and full tables of results 
are available at www.emergentcomputing.org/timetabling/harderinstances.htm. 
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