
An Improved Multi-Objective Algorithm for the
Urban Transit Routing Problem

Matthew P. John1,2, Christine L. Mumford1, and Rhyd Lewis2

1 Cardiff School of Computer Science & Informatics, Wales
2 Cardiff School of Mathematics, Wales

JohnMP@cardiff.ac.uk

Abstract. The determination of efficient routes and schedules in public
transport systems is complex due to the vast search space and multi-
ple constraints involved. In this paper we focus on the Urban Transit
Routing Problem concerned with the physical network design of pub-
lic transport systems. Historically, route planners have used their local
knowledge coupled with simple guidelines to produce network designs.
Several major studies have identified the need for automated tools to aid
in the design and evaluation of public transport networks. We propose a
new construction heuristic used to seed a multi-objective evolutionary al-
gorithm. Several problem specific mutation operators are then combined
with an NSGAII framework leading to improvements upon previously
published results.

1 Introduction

The Urban Transit Network Design Problem (UTNDP) involves the determina-
tion of an efficient set of routes and schedules for public transportation systems
such as bus, rail and tram networks. Ceder and Wilson [1] identified five main
stages for bus service planning: network design, frequency setting, timetable de-
velopment, bus scheduling and driver scheduling. Given that each stage of the
UTNDP is NP-hard [2], it is usually considered impractical to solve all the stages
simultaneously.

In this paper we focus on the network design element, which is tasked with
determining an efficient set of routes on an already established road (or rail)
network, usually with previously identified pickup and drop off locations (e.g.
bus stops). Building upon recently published work by Mumford [3], we present a
much improved multi-objective approach based upon NSGAII [4]. Our approach
considers the trade offs between passenger and operator costs by producing ap-
proximate Pareto optimal sets for consideration by a human decision maker.
Furthermore, we provide a discussion of the many specialised heuristics and
operators we have tested during the development of our approach.

Historically, route planners have used a combination of local knowledge and
simple guidelines to produce route sets. Several major studies (see [5, 6]) have
identified the need for automated computer based tools for the design and eval-
uation of public transport networks. Automation is, however, highly complex

2

and computationally expensive due to the large search space and multiple con-
straints involved in public transportation planning. The increase in congestion,
pollution, greenhouse gas emissions and dwindling oil resources have placed em-
phasis on the use of public transport in recent years in an attempt to reduce the
reliance of the private car. Achieving an increase in public transportation usage
is clearly desirable but is also an extremely complex issue. However frequent and
reliable cost-effective services are clearly key attributes.

Bagloee and Ceder [7] have recently pointed out that many public transit net-
works have not been reappraised from anywhere between 20 to 50 years. Land
use patterns have changed considerably in this time period with the migration
away from town centres into surrounding suburban areas; however public trans-
port has been relatively slow to respond. It is our view that the development of
automated tools to aid public transport networks is timely.

Prior to 1979, the few papers published on the UTNDP considered only highly
specific problem instances [8, 9]. In 1979, Christoph Mandl [10, 11] approached
the problem in a rather more generic form. He concentrated on the network de-
sign phase, and developed a two-stage solution. First a set of feasible routes is
generated, second, heuristics are applied to improve the quality of the routes in
this set. Following Mandl’s pioneering work, heuristic methods have been widely
used to solve the UTNDP, e.g. [1, 12]. With the advancement of computing tech-
nology over the last two decades however, metaheuristic techniques have become
increasingly popular for solving these problems, particularly genetic algorithms
(GAs) [13–16]. Other metaheuristic methods such as tabu search and simulated
annealing can also be seen in [17, 18]. Nevertheless, comparative work has been
limited to Mandl’s 15 vertex instance.

One of the first approaches using a GA was proposed by Pattnaik et al. [15]
utilising a route set generation procedure guided by a demand matrix, designer
knowledge, and route constraints to produce a set of candidate routes. The role
of the GA is simply to select a number of routes from the candidate set, where
each route is given a unique identifier encoded in binary. This approach is similar
to those proposed by Tom and Mohan [16] and Fan and Machemehl [19].

Chakroborty and Dwivedi [14] generated an initial set of candidate route sets
each with a fixed number of routes. A GA was then applied using two crossover
operators: 1) Inter-string crossover which exchanges routes from the parent route
sets, and 2) Intra-string crossover which exchanges parts of a route in a parent
if two routes share a common vertex. Mutation is then applied by randomly
selecting a vertex and changing it to any of its acceptable adjacent vertices.

Similar to Chakroborty and Dwivedi, Fan et al. [20] generated an initial
population of feasible route sets. Their GA used a mutation operator where a
vertex can be either added to the end of a route or removed from the start.
However, their GA lacked a crossover operator.

Bagloee and Ceder [7] tackled real sized road networks using a combination
of heuristics, a GA and an ant-system. They determined the location of stops
based upon the distance to high concentrations of travel demand and then used
a system inspired by Newtonian gravity theory to produce a set of candidate

3

routes. A GA was then used to search through the candidate routes to find a
good solution – the frequencies of the routes was computed simultaneously.

Recently Mumford [3] presented an approach using a constructive heuristic
to generate an initial population. This was then evolved using a multi-objective
evolutionary algorithm (MOEA). Mumford’s crossover operator alternates the
selection of routes between two parents, favoring routes containing vertices that
are not currently present in the partial solution, while ensuring route connec-
tivity. Two mutation operators are also proposed that add or delete a bounded
random number of vertices from a route set. Four benchmark instances based
on real-world bus route networks were also created and made publicly available
[3].

2 Problem Description

The network design problem can be formally stated as follows. Given a graph
G = (V,E) where V = {v1, . . . , vn} is a set of vertices and E = {e1, . . . , em} is
a set of edges, we are given:

– A weight for each edge, Wei , which defines the time it takes to traverse edge
ei;

– A matrix Dn×n where Dvi,vj gives the passenger demand between a pair of
vertices vi and vj .

A route Ri is defined as a simple path (i.e. no loops/repeated vertices)
through the graph G. Let GRi

= (VRi
, ERi

) be the subgraph induced by a route
Ri. A solution is defined as a set of overlapping routes R = {R1, . . . , Rr} where
the number of routes, r, and the minimum, m1, and maximum, m2, number of
vertices in a route are to be specified by the user. In order for R to be valid the
following conditions must hold:

|R|⋃
i=1

VRi
= V (1)

m1 ≤ |VRi
| ≤ m2 ∀Ri ∈ R (2)

GR = (

|R|⋃
i=1

VRi
,

|R|⋃
i=1

ERi
) is connected (3)

|R| = r (4)

Constraint (1) ensures that all vertices in V are in at least one route in
R. Constraint (2) specifies that each route should contain between m1 and m2

vertices (these values are based on considerations such as driver fatigue and the
difficulty of maintaining the schedule [6]). Constraint (3) specifies that a path
exists between all pairs of vertices in GR. If Constraint (1) is satisfied then

4

GR = (V,
|R|⋃
i=1

ERi). Finally, Constraint (4) ensures that the solution contains the

correct number of routes.
For this problem formulation, the following assumptions are also made:

1. There will always be sufficient vehicles on each route Ri ∈ R to ensure that
the demand between every pair of vertices is satisfied.

2. A vehicle will travel back and forth along the same route, reversing its di-
rection each time it reaches a terminal vertex.

3. The transfer penalty (representing the inconvenience of moving from one
vehicle to another) is set at a fixed constant. In this study a value of 5
minutes is used in line with previous studies (e.g. [14, 21]).

4. Passenger choice of routes is based on shortest travel time (which includes
transfer penalties).

In this problem we consider both the passenger cost and operator cost. In gen-
eral, passengers would like to travel to their destination in the shortest possible
time, but avoiding the inconvenience of making too many transfers. We define a
shortest path between two vertices using the route set R as αvi,vj (R). A path
may include both transport links and transfer links (a transfer link facilitates the
changing from one vehicle to another with the associated time penalty). This is
shown in Fig. 1 with the original network expanded to include transfer vertices
and transfer links. The shortest path evaluation is thus completed on the transit
network Fig. 1(b). The minimum journey time, αvi,vj

(R), from any given pair of
vertices is thus made up of two components: in vehicle travel time and transfer
penalty. We define the passenger cost for a route set R to be the mean journey
time over all passengers as given by Mumford [3]:

F1(R) =

∑n
i,j=1Dvi,vjαvi,vj (R)∑n

i,j=1Dvi,vj

(5)

Operator costs depend on many factors, such as the number of vehicles needed
to maintain the required level of service, the daily distance travelled by the
vehicles and the costs of employing sufficient drivers. We use a simple proxy for
operator costs: the sum of the costs (in time) for traversing all the routes in one
direction, as given by Mumford [3]:

F2(R) =
∑
∀Ri∈R

∑
∀ej∈Ri

Wej (6)

3 Methodology

In this paper we propose an approach that seeds a MOEA with a high qual-
ity initial population formed using a powerful heuristic construction procedure.
NSGAII [4] is then used with the crossover and repair operators proposed by
Mumford [3] along with several new mutation operators.

5

Fig. 1. (a) Route network – road network with routes overlayed (b) Transit network –
network used for evaluation.

3.1 NSGAII

NSGAII is an elitist non-dominated sorting MOEA widely used to solve multi-
objective optimization problems. It has been shown to find a better spread of
solutions and convergence nearer to the true Pareto-optimal front compared with
other Pareto based methods [4] .

The basic form of an NSGAII generation proceeds by creating an offspring
population of size N. This is then combined with the parent population of size
N to produce a population, P = {R1,R2, . . . ,R2N}. Let us now define two
attributes of a route set Ri: 1) Rirank the non-dominated front that Ri belongs
to, and 2)Ridist

the crowding distance associated withRi as defined by Deb et al.
[4]. P is then sorted such that ∀Ri,Rj ∈ P Rirank ≤ Rjrank and Ridist ≥ Rjdist

for i < j. The successor population is then formed by taking the first N solutions
in P .

Similar to [4], in our case a new population is generated using binary tourna-
ment selection with a crossover probability of 0.9. The probability of mutating
each route in an offspring is set as 1

r .

3.2 Heuristic Construction

As mentioned earlier, heuristic construction was widely used for the network
design stage before the use of metaheuristic algorithms became more widespread
in the literature. Our construction heuristic creates solutions by incorporating
knowledge that exploits the underlying structure of the problem.

The majority of previous approaches for tackling network design (see [18, 19,
15]) generate a candidate pool of routes using Dijkstra’s shortest path algorithm
and Yen’s [22] k -shortest path algorithm to enumerate all possible routes. An
optimization algorithm is then applied to find the best combination of routes
from the candidate pool, although there is still no guarantee that the optimal

6

configuration of routes will be selected. As such we have chosen to combine our
approach with that used by Shih and Mahmassani [21] with modifications to
produce route sets that balance the cost to the operator and passengers whilst
ensuring the constraints of the problem are adhered to. Shih and Mahmassani
[21] generate an initial route set using a heuristic procedure that continually
adds routes until user-defined levels on directness and coverage are reached. This
contrasts with our approach where the number of routes is fixed. Furthermore,
our method ensures that all vertices are present within a route set, allowing a
passenger to reach any vertex in the network using transfers if necessary.

Our approach generates a set of weighted graphs using a weighted sum of
normalized travel time and (1 − normalized demand) with weights specified in
advance by the user. A route set, R, is then generated from a given weighted
graph. A spanning subgraph is first created using an iterative procedure with the
objective of minimizing the sum of the weighted edge costs. In the first iteration
of this procedure the pair of vertices (seed pair) with the lowest weighted edge
cost are selected. In subsequent iterations a seed pair contains one vertex already
contained in the subgraph, ensuring that routes remain connected. A seed pair
is then expanded to form a route by adding adjacent vertices.

During this expansion process vertices that are adjacent to the first or last
vertex in the route are sorted against their weighted edge cost. The minimum
cost unused vertex is then added to the route. If there are no unused vertices
the minimum cost adjacent vertex is instead added to the route providing of
course that the vertex is not present in the current route under construction. If
multiple vertices are in the set of potential vertices with equal weight a random
vertex from this set is selected. Vertices are continually inserted until a vertex
can no longer be inserted that would not cause a constraint to be violated.

Providing that |R| < r the next stage of the heuristic procedure is applied
using an approach utilized by Shih and Mahmassani [21]. The vertex pairs (vi, vj)
that are yet to be satisfied directly (i.e. it is not possible to travel between the
vertices without having to make a transfer) are extracted from the network and
sorted in non-ascending order based upon the demand Dvi,vj . The unsatisfied
vertex pairs are taken in order and Yen’s k -shortest path algorithm is applied
to determine if a valid route, originating at vi and terminating at vj , can be
constructed that obeys all of the constraints. In our case a maximum of ten
‘shortest’ paths are explored for each vertex pair. An alternative to satisfying
the vertex pairs that are not satisfied directly is to minimize the travel time for
passengers on high demand vertex pairs. In this instance all the vertex pairs
are extracted and sorted based upon non-ascending demand. If a valid route is
found, the cost of the route is calculated and compared with the αvi,vj (R). If the
cost is less than αvi,vj (R) the route is inserted into R. This process is applied
iteratively until |R| = r.

3.3 Genetic Operators

Crossover: We use the crossover operator proposed by Mumford [3], which en-
sures that the problem constraints are obeyed. Given two parents, the crossover

7

operator constructs an offspring, R′, by alternatively selecting a route from
each parent that maximises the proportion of unseen vertices, until |R′| = r.
The set of unseen vertices is defined as Vunseen = V − VR′ . Consider a route
Ri = 〈1, 7, 8, 9, 12, 14〉 that is contained in one of the parents and is being con-
sidered for insertion into R′. If R′ = {R1} where R1 = 〈12, 15, 0, 5, 3〉 then
Vunseen = Ri − R1 = {1, 7, 8, 9, 14}. Therefore the proportion of unseen vertices

is |Vunseen|
|Ri| = 5

6 in this case.

After crossover has been applied it is possible that the offspring will not
contain all the vertices in V . In these cases the repair procedure used by Mumford
is applied that attempts to add the missing vertices to either the back or front
of the routes.

Mutation: In our approach eight mutation operators are used. Some of these
apply heuristics to mutate the route set in a way that encourages an improvement
in quality. Mutation must be carefully controlled to prevent violation of the prob-
lem constraints. The names of these mutation operators are add-nodes, del-nodes,
exchange, merge, replace, remove-overlapping, two-opt and invert-exchange.

Add-nodes and del-nodes were both proposed in [3]. At the start of add-nodes
or del-nodes an integer I is generated uniform randomly in the range [1, r× m2

2],
giving the number of vertices to be added or removed from R. A route Ri ∈ R
is then selected at random and, in the case of add-nodes, vertices are added to
the end of the route until the addition of a vertex would cause Constraint (2) to
be violated or, result in Ri no longer being a simple path. Following a similar
approach, vertices are then added to the front of the route if possible. This
process is repeated for each Ri ∈ R until I vertices have been added to R or all
routes have been exhausted. The case is the same for del-nodes with I vertices
being removed from R whilst ensuring feasibility.

The Exchange operator, as proposed by Mandl [10], selects a route at ran-
dom. The route set is then searched to determine if there exists a route with a
common vertex to the selected route. The problem constraints are also checked
to determine if R will be valid after the mutation has been applied. If valid, the
two routes are split at the first common vertex, creating four route segments.
The two original routes are then replaced by exchanging the segments to create
two new routes. The exchange of route parts attempts to reduce the number of
transfers passengers must make.

Similar to exchange, the merge operator, selects a random route and searches
the remaining routes to find a route that shares a common terminal vertex.
The two routes are then merged creating one continuous route, disregarding
one of the common terminal vertices – providing that Constraint (2) is not
violated and the merged route is a simple path. If successful, a route generation
procedure (route-gen) is then used to generate a new route for insertion. The
route generation procedure is as follows: vertex pairs that are not yet satisfied
directly are extracted from the route set and sorted via non-ascending demand
(i.e. given every pair of vertices in the network we are only interested in those
that cannot be reached without transfers, given the current configuration of R).

8

Yen’s k -shortest path algorithm is then used to generate a bounded number of
paths, in our case ten, between the two vertices and a random path selected for
insertion. If the number of vertex pairs yet to be satisfied directly is zero, a path
is generated between the vertices with the highest demand in the network.

The Replace operator removes a route Ri ∈ R that satisfies the least demand
directly compared with all other routes in R. A replacement route is then gener-
ated using the route-gen procedure described above. The purpose of the replace
mutation is to sacrifice routes that serve a relatively low demand in place of high
demand routes. Replace can cause a route set to become invalid if the removed
route acted as a transfer hub for routes, i.e. the route set was only connected
when the removed route was present. If this situation occurs the repair proce-
dure used during crossover is applied and, if successful, the mutated solution is
returned. Otherwise the mutation is abandoned.

The Remove-overlapping operator replaces a route that is a subset of an-
other route. If an overlapping route is discovered, it is removed and the route
generation procedure described above is used to produce a replacement route.
Replacing the route provides the operator with the ability to remove duplicate
services and use these resources to serve other passenger demand.

Two-opt, proposed in 1958 by Croes [23] for use with the traveling salesman
problem selects two vertices at random in a route and inverts the vertices between
them. Its original purpose was to remove crossover points in a route, however
this is not allowed to occur in this context. In our case it reorders the vertices in
a route attempting to reduce the travel time between vertex pairs, abandoning
infeasible attempts.

Invert-exchange selects two routes at random and generates two random
index locations. The vertices between the two random index locations are then
inverted and exchanged between the two routes. For example, given two routes
R1 = 〈3, 5, 8, 10, 12, 15〉 and R2 = 〈1, 6, 9, 8, 11, 7〉 with the selected indices of
3 and 5. We invert everything in R1 between the indices giving 〈12, 10, 8〉 then
replace the vertices in R2 between the indices with the inverted section from
R1. In this case the resultant two routes would be R3 = 〈3, 5, 11, 8, 9, 15〉 and
R4 = 〈1, 6, 12, 10, 8, 7〉. Invert-exchange attempts to decrease the travel time
between vertices and prevent passengers having to make a transfer. Similar to
two-opt there is a high possibility that the majority of routes created using this
approach will be infeasible. As such, two routes are continually chosen at random
until the routes have been exhausted or a feasible solution has been found.

4 Results

In this section we show how the algorithm of Mumford [3] (Algorithm A), based
on the SEAMO2 framework, can be improved, by seeding the MOEA with our
heuristically generated solutions (Algorithm B). We then look at the effects of
adding our mutation operators (Algorithm C) and finally look at the effects of
using the NSGAII framework (Algorithm D) as opposed to SEAMO2. All exper-
iments use an initial population of size 200 and are run for 200 generations, the

9

Table 1. Problem instances used for comparison with the lower bound (LB) for each
objective.

Instance Vertices Edges r m1 m2 Vertices in Typical Transit Net. LBF1 LBF2

Mandl 15 20 6 2 8 6 × (2+8)
2

= 30 10.0058 63
Mumford0 30 90 12 2 15 102 13.0121 94
Mumford1 70 210 15 10 30 300 19.2695 294
Mumford2 110 385 56 10 22 896 22.1689 749
Mumford3 127 425 60 12 25 1110 24.7453 928

same as in [3] so that valid comparisons can be made. Running times range from
a couple of seconds for Mandl’s instance up to two days for Mumford3. Twenty
replicate runs are used and the results have been combined into approximate
Pareto sets for comparison. Problem instances generated by Mumford [3] along
with Mandl’s [10] benchmark are used. Table 1 summarises the details of each
instance along with the parameters used and lower bounds as given in [3].

Using our heuristic construction procedure, a subset of unique solutions are
randomly selected for insertion into an initial population. Randomly generated
solutions are then used to top-up the initial population if there are too few
heuristic solutions. These random solutions are created using the same approach
as Mumford [3] to seed her MOEA. In summary this approach constructs a
route set one route at a time. A route length is randomly generated between
m1 and m2 and a random vertex, v ∈ V , is selected as the seed. A randomly
selected adjacent vertex is then added to the back of the route, and this process
is repeated. Once the vertices that can be added to the back are exhausted
the process is repeated from the front of the route until the desired length is
achieved.

We firstly augment Mumford’s SEAMO2 algorithm with our heuristic method
for generating the initial population (Algorithm B). Table 2 presents the best
solutions from the passenger and operator perspective compared to the findings
of [3]. We see that our heuristic is clearly beneficial, producing an improvement
over all the instances. Where an improvement is made in the objective value, ei-
ther from the passenger or operator perspective, we can see that an improvement
is also made to the other objective on the majority of instances. An improve-
ment from the operator perspective on Mandl’s instance is not possible as 63
is the lower bound for this instance [3]. However, a decrease is observed in the
passenger objective associated with the operator objective of 63 compared to
that found by Mumford.

Taking the best algorithm (Algorithm B) from the previous experiment we
now examine the effect of augmenting the algorithm with our proposed mutation
operators. Comparing S-metric values for Algorithms B and C (Table 3) we can
see that an improvement is achieved with all instances apart from Mumford2. If
the Pareto set is plotted for Mumford2 (Fig. 2) it can be seen that there is an
improvement in the passenger objective for the majority of solutions. However,
we struggle to make improvements in the extremes of the operator objective.

10

Table 2. Best objective values extracted from twenty replicate runs using heuristic
seeding for the initial population (Algorithm B). Mumford’s [3] results are given in
brackets.

Mandl Mumford0 Mumford1 Mumford2 Mumford3

Best for F1 10.25(10.33) 15.40(16.05) 23.91(24.79) 27.02(28.65) 29.50(31.44)
passenger F2 212(224) 745(759) 1861(2038) 5461(5632) 6320(6665)

Best for F1 13.48(15.13) 32.78(32.40) 39.98(34.69) 32.33(36.54) 36.12(36.92)
operator F2 63(63) 95(111) 462(568) 1875(2244) 2301(2830)

Table 3. S-metric comparison over the five benchmark instances for our proposed
modifications.

Instance Alg. A Alg. B Alg. C Alg. D

Mandl 2620.19 2620.21 2626.94 2631.16
Mumford0 14951.24 15031.81 15304.90 15451.50
Mumford1 111947.82 114614.99 114972.74 117866.22
Mumford2 306261.94 322753.72 322618.47 337987.85
Mumford3 507983.61 538371.55 539296.98 562793.74

Given the popularity of NSGAII and its stated ability to produce a Pareto set
closer to the true Pareto-optimal front compared with other Pareto based meth-
ods [4], it was used instead of SEAMO2 in our third set of experiments. Here,
we used our mutation operators and heuristic seeding, together with Mumford’s
crossover operator. As mentioned earlier a probability of crossover and mutation
of 0.9 and 1

r respectively are used. A comparison of S-metric values, Table 3,
shows that NSGAII gives an improvement over all the problem instances. This is
displayed graphically in Fig. 2. These improvements can be attributed to the fol-
lowing: 1) A higher selection pressure compared with SEAMO2, and 2) Increased
rate of mutation leading to a greater exploration of the search space.

5 Conclusion

This paper has presented a new construction heuristic for creating initial so-
lutions to the transit network design problem. For this problem it has been
shown that the use of heuristic solutions in a MOEA’s initial population can
produce an improvement in the resultant Pareto set – compared with the use
of solely randomly generated solutions. Several mutation operators have also
been proposed and combined with our construction heuristic to produce an im-
provement over previously published results. Finally, we have also shown that
further improvements can be found if NSGAII is used in place of SEAMO2. We
are currently investigating the introduction of frequency setting to the MOEA
framework using more realistic evaluation, allowing our model to more accu-
rately reflect passenger choice. In addition we are collecting real-world data to
enable the production of more benchmark instances.

11

10 10.5 11 11.5 12 12.5 13 13.5

60

80

100

120

140

160

180

200

220
Mandl

Passenger Cost F
1
 (minutes)

O
p

e
ra

to
r

C
o

s
t

F
2
 (

m
in

u
te

s
)

Algorithm A

Algorithm B

Algorithm C

Algorithm D

14 16 18 20 22 24 26 28 30 32 34

0

100

200

300

400

500

600

700

800
Mumford0

Passenger Cost F
1
 (minutes)

O
p
e
ra

to
r

C
o
s
t
F

2
 (

m
in

u
te

s
)

Algorithm A

Algorithm B

Algorithm C

Algorithm D

22 24 26 28 30 32 34 36 38 40

400

600

800

1000

1200

1400

1600

1800

2000

2200
Mumford1

Passenger Cost F
1
 (minutes)

O
p
e
ra

to
r

C
o
s
t
F

2
 (

m
in

u
te

s
)

Algorithm A

Algorithm B

Algorithm C

Algorithm D

26 28 30 32 34 36 38 40 42 44 46

1500

2000

2500

3000

3500

4000

4500

5000

5500
Mumford2

Passenger Cost F
1
 (minutes)

O
p
e
ra

to
r

C
o
s
t
F

2
 (

m
in

u
te

s
)

Algorithm A

Algorithm B

Algorithm C

Algorithm D

28 30 32 34 36 38 40 42 44

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500
Mumford3

Passenger Cost F
1
 (minutes)

O
p
e
ra

to
r

C
o
s
t
F

2
 (

m
in

u
te

s
)

Algorithm A

Algorithm B

Algorithm C

Algorithm D

Fig. 2. Combined Pareto fronts extracted from twenty runs for each of the five bench-
mark instances using the four algorithms.

References

1. Ceder, A., Wilson, N.H.M.: Bus network design. Transportation Research Part B
20(4) (1986) 331–344

2. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: Models
and algorithms. Transportation Science 18(1) (1984) 1–55

12

3. Mumford, C.L.: New heuristic and evolutionary operators for the multi-objective
urban transit routing problem. Evolutionary Computation (CEC), 2013 IEEE
Congress on (2013) 939–946

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2) (2002) 182–197

5. Nielsen, G., Nelson, J.D., Mulley, C., Tegner, G., Lind, G., Lange, T.: Public
transport–planning the networks. HiTrans Best Practice Guide. (2005)

6. Zhao, F., Gan, A.: Optimization of transit network to minimize transfers. (2003)
7. Bagloee, S.A., Ceder, A.A.: Transit-network design methodology for actual-size

road networks. Transportation Research Part B 45(10) (2011) 1787–1804
8. Lampkin, W., Saalmans, P.D.: The design of routes, service frequencies, and sched-

ules for a municipal bus undertaking: A case study. OR (1967) 375–397
9. Silman, L.A., Barzily, Z., Passy, U.: Planning the route system for urban buses.

Computers & Operations Research 1(2) (1974) 201–211
10. Mandl, C.E.: Applied network optimization. Academic Pr (1979)
11. Mandl, C.E.: Evaluation and optimization of urban public transportation networks.

European Journal of Operational Research 5(6) (1980) 396–404
12. Baaj, M.H., Mahmassani, H.S.: Hybrid route generation heuristic algorithm for

the design of transit networks. Transportation Research Part C 3(1) (1995) 31–50
13. Agrawal, J., Mathew, T.V.: Transit route network design using parallel genetic

algorithm. Journal of Computing in Civil Engineering 18(3) (2004) 248–256
14. Chakroborty, P., Dwivedi, T.: Optimal route network design for transit systems

using genetic algorithms. Engineering Optimization 34(1) (2002) 83–100
15. Pattnaik, S.B., Mohan, S., Tom, V.M.: Urban bus transit route network design

using genetic algorithm. Journal of Transportation Engineering 124(4) (1998)
368–375

16. Tom, V.M., Mohan, S.: Transit route network design using frequency coded genetic
algorithm. Journal of Transportation Engineering 129(2) (2003) 186–195

17. Fan, W., Machemehl, R.B.: A tabu search based heuristic method for the transit
route network design problem. Computer-aided Systems in Public Transport (2008)
387–408

18. Fan, W., Machemehl, R.B.: Using a simulated annealing algorithm to solve the
transit route network design problem. Journal of Transportation Engineering
132(2) (2006) 122–132

19. Fan, W., Machemehl, R.B.: Optimal transit route network design problem with
variable transit demand: genetic algorithm approach. Journal of Transportation
Engineering 132(1) (2006) 40–51

20. Fan, L., Mumford, C.L., Evans, D.: A simple multi-objective optimization algo-
rithm for the urban transit routing problem. Evolutionary Computation, 2009.
CEC’09. IEEE Congress on (2009) 1–7

21. Shih, M.C., Mahmassani, H.S.: A design methodology for bus transit networks
with coordinated operations. Technical Report SWUTC/94/60016-1 (1994)

22. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management science
17(11) (1971) 712–716

23. Croes, G.A.: A method for solving traveling-salesman problems. Operations Re-
search 6(6) (1958) 791–812

