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Abstract- A grouping genetic algorithm (GGA) for the 
university course timetabling problem is outlined.  We 
propose six different fitness functions, all sharing the 
same common goal, and look at the effects that these 
can have on the algorithm with respect to both solution 
quality and time requirements. We also propose an 
additional, stochastic local-search operator and 
discover that this too can have large positive and 
negative effects on the runs. As a by-product of these 
studies, we introduce a method for measuring 
population diversity with the GGA model and note 
that diversity seems to have huge consequences on the 
cost implications of the algorithm. We also witness that 
the algorithm can behave quite differently with 
varying sized instances, introducing scaling-up issues 
that could, quite possibly, apply to grouping genetic 
algorithms as a whole. 

1 Introduction 

The NP-hard problem of university course timetabling 
involves assigning resources, such as rooms, to the events 
of a university. Usually, timetabling problems in the 
literature consist of two sub-problems: 

• The production of feasible timetables, 
• The production of nice timetables. 

Generally speaking, feasible timetables are ones in which 
all the events have been assigned the resources they 
require and which do not ask the impossible of anyone or 
anything by, say, putting multiple events into the same 
room at the same time, or asking a student to be in two 
places at once. A nice timetable, on the other hand, is 
usually (although, it must be noted, not always - see [11]) 
one that is both feasible and also eases, as much as 
possible, the burdens of the people who are to be using it. 
As can be imagined, real-world timetabling problems can 
vary a great deal from institution to institution and while 
this has resulted in a rich variety of works addressing 
different versions of the problem, it also makes it tricky to 
compare different algorithms in order to identify their 
individual benefits and drawbacks. 

The problem version that we choose to address here 
has already been widely studied and seems a good 
benchmark in this field. It was originally formulated for 

the Metaheuristics Network [16] and was also used for the 
International Timetabling Competition, run in 2002 [15]. 
Specifically, the problem involves the assignment of all 
events to rooms and timeslots in the timetable and, in 
order to be feasible, these assignments must meet three 
criteria (the so-called hard constraints). These are:  

• Only one event is put in any room in any timeslot, 
• Rooms that events are assigned to must be big enough 

to hold the attending students and have the facilities 
that the event requires. 

• Students do not attend more than one event in any one 
timeslot. 

There are also some (soft) constraints that specify what it 
is to be a nice timetable. These include such things as 
avoiding students having to attend three or more events in 
successive timeslots, and stopping students from having 
only one event in any day. 

There have been various algorithms proposed in the 
literature for this specific problem, most commonly using 
benchmark instances [15, 17]. Although each has their 
own strengths and weaknesses, the trend would seem to be 
that the algorithms that address both sub-problems 
simultaneously (e.g. through the use of weightings in the 
evaluation function [12]) are generally outperformed by 
those that employ a two-stage strategy whereby feasibility 
is first obtained and then soft constraints are optimised 
using operators that restrict the search to feasible areas of 
the search space [1, 2, 6]. However, whilst there are plenty 
of works proposing algorithms specialising in soft 
constraint optimisation, there has been less emphasis on 
producing algorithms that specialise in finding feasibility 
in the first place. In particular, when considering “harder” 
problem instances, some of the existing algorithms in the 
literature could start to fail on this matter. This therefore 
generates a need for new algorithms that provide more 
robust searches with regards to finding feasibility. 

1.1 Timetabling and Grouping Genetic Algorithms 
In [7], Lewis and Paechter designed a grouping genetic 
algorithm (GGA) for constructing feasible timetables. The 
foundation of this work was based upon the observation 
that the probelm of finding feasibility in this case, in 
common with problems such as bin-packing, graph-
colouring and bin-balancing, is an example of a so-called 
grouping problem [4]. Grouping problems may be thought 
of as those where the aim is to arrange a collection of 
items into a number of groups, subject to some problem-



specific constraints that define valid and legal groupings. 
In particular, it is a well-held belief that when using any 
sort of evolutionary algorithm to address these problems, 
it is the groups of items themselves (i.e. items in a 
particular bin, nodes of a particular colour etc.) that 
represent the underlying building blocks and not the 
particular states of any of the items individually. Hence 
representations and genetic operators that allow these 
groups to be propagated are to be encouraged.  

With regards to our timetabling problem, the events are 
the items and the timeslots represent the groups. Thus, in 
order for a timetable to be feasible, all events need to be 
arranged into a predefined number of timeslots such that, 
(1) no events in a timeslot have any common students (i.e. 
each timeslot obeys the third hard-constraint), and (2) 
every event in a timeslot can be assigned to their own 
room that has the facilities and the seating capacity that 
the event requires (therefore satisfying the first and second 
hard-constraints).  

Note also that it is usual in many GGAs (e.g. [3]) to 
consider a particular chromosome as an unordered set of 
groups - that is, two solutions that define the same 
groupings will define the same solution, regardless of the 
group’s orderings in the chromosome. However, while this 
characteristic is also true for our timetabling problem with 
respect to the hard constraints, it is not so for the soft 
constraints, making this approach unsuitable for the 
secondary task of soft constraint optimisation. 

Here, as in [7], each timetable is represented by a two 
dimensional matrix where rows represent rooms and 
columns represent timeslots. Each timetable of the initial 
population is built using stochastic, constructive heuristics 
that attempt to assign all events to a feasible place in the 
timetable (i.e. cell in the matrix). When this is not possible 
because there is no feasible place for a particular event, 
extra timeslots are opened accordingly (extra columns are 
added to the matrix). The underlying objective of the 
algorithm is to therefore reduce the number of timeslots 
being used down to the target amount. GGA operators that 
follow the basic framework suggested by Falkenauer [4] 
are also used. The recombination operator works by 
injecting some timeslots from a timetable p1 into another 
timetable p2, removing timeslots (and the events assigned 
to these timeslots) from the old part of p2 that cause 
duplicates, and then using similar constructive heuristics 
to insert the resulting unplaced events (see figure 1 for two 
examples). The mutation operator simply removes a small 
number of randomly selected timeslots from a timetable 
and reinserts the events via similar constructive heuristics. 

In [7], through the use of these GGA operators and 
powerful constructive heuristics, the algorithm showed to 
be very successful – it was able to find feasibility 
immediately on the benchmark instances used for the 
International Timetabling Competition [15] (although it 
must be said that these instances were chosen with soft 
constraints in mind) and was also very successful at 
tackling some “harder” instances which were created, and 
are available for download [17]. In simple tests it was also 
observed that the recombination operator seemed to add a 

great deal of power to the search with respect to solution 
quality, but it was also more computationally expensive 
than the mutation operator. This presents users with a 
trade off – if time constraints are particularly tight then 
recombination should only be used in limited amounts. 
However, in doing so the algorithm is more susceptible to 
getting stuck in local optima. Indeed, when recombination 
was used abundantly and the algorithm given enough time, 
superior results were nearly always found [7]. 
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Figure 1. Two examples of recombination showing (1) 
selection of three crossover points, (2) injection, and (3) 
elimination of timeslots containing duplicates. 

In this paper we conduct a further analysis into this 
algorithm. We test a number of different fitness functions 
and look at what effects these can have on solution quality 
and execution time. Secondly, we also look at the effects 
that a simple stochastic local-search operator (embedded 
into the genetic operators) can have on the algorithm.  

The remainder of the paper is set out as follows: In 
section 2 we look at the issue of measuring population 
diversity with the standard GGA representation and make 
some remarks on the effects that it can have with the 
recombination operator. In section 3 we go on to define 
six fitness functions and analyse their effects on the 
algorithm’s behaviour. Next, in section 4 we introduce the 
local-search operator. Section 5 concludes the paper.  

2 Population Diversities and Recombination 

The GGA representation used here admits two important 
properties: chromosomes are variable in length, and the 
ordering of groups within the chromosome is irrelevant 
(with regards to the solutions that they represent). This 
renders the more traditional methods of calculating 
population diversity (such as using Hamming distances 
[9]) as inappropriate. 

A suitable measure however seems to be the substring-
count method of Mattiussi et al. [8], which specialises in 
measuring diversity in populations where individuals are 
subject to major reorganisations during the evolutionary 
process. For our, purposes we calculate the diversity of a 
population P, via the formula:  
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where ρ is the population size, m represents the number of 
different groups in the population, and n represents the 
total number of groups in the population. Using this 
measure, a homogenous population therefore has a 
diversity of 1.0, and a population of distinct individuals 
(that is, a population where none of the individuals contain 
an equivalent grouping of items), will have a diversity of 
ρ. 

Using these ideas, we can also measure the distance 
between two individuals, p1 and p2, via the formula: 
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where x is the number of different groups in p1 and p2, and 
y is the total number of groups in p1 and p2. Thus, two 
homogenous individuals will have a distance of zero and 
two maximally distinct individuals will have a distance of 
one.  

With regards to recombination, it was noticed early on 
in experiments that the operator tended to take longer at 
the beginning of the run, and then gradually sped up as the 
search progressed. Investigations have revealed that when 
the population is diverse (and hence the average distance 
between pairs of individuals is large), more events, on 
average, seem to become unplaced during recombination, 
therefore increasing the amount of rebuilding needed to be 
done. In contrast, when the population is nearing 
convergence, little, if any rebuilding is usually required. 
We can see this by looking back at figure 1. Here, dist(p1, 
p2) = 0.5 and only one event (event D) becomes unplaced. 
On the other hand, p1 and p3 are maximally distinct (that 
is, dist(p1, p3) = 1.0) and three of the seven events (events 
A, D and F) become unplaced. This example, although 
small, reveals the general pattern displayed by the 
algorithm and indeed, this correlation is displayed well in 
figure 2.  
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Figure 2. Example run with a medium sized instance (410 
events) showing (1) how diversity can change during the 
evolutionary process (2) the close relationship between this 
and the amount of rebuilding needed to be done (on average) 
with the recombination operator. (With a population size 50.) 

Here, as a population of timetables is evolved during a run 
we see, fairly typically, that diversity falls. However, we 
also see that the average number of events becoming 
unplaced during recombination (and therefore having to 
be dealt with by the rebuilding process) mirrors this fall. 
This correlation signifies an extra issue of algorithmic 
complexity that we examine further in the following 
sections. 

3 The Effects of Various Fitness Functions 

An important aspect of any evolutionary algorithm is the 
way in which candidate solutions in the population are 
evaluated. Ideally, a good fitness function should convey 
meaningful information about a solution and should also 
encourage the search into promising parts of the search 
space. For many problems in operational research, a 
suitable fitness function is suggested naturally by the 
problem at hand (e.g. the travelling salesman problem 
[13]). In others it is not so easy. For example, Falkenauer 
[4] suggests that for the bin-packing problem, the most 
obvious way of measuring solution fitness is to measure 
the number of bins being used, with the aim of 
minimisation. As is noted, from a mathematical point of 
view this is correct, but in practice it is unsuitable because 
it leads to a seriously unfriendly search landscape where 
“a very small number of optimal points in the space are 
lost in the exponential number of points where this 
purported cost is just one unit above the optimum. Worse, 
these slightly sub-optimal points [all] yield the same cost”. 

Similar observations can be made with this timetabling 
problem: the ultimate aim is to arrange all of the events 
into an acceptable number of feasible timeslots (in our 
case forty-five). But likewise, we believe that using the 
current number of timeslots in a particular timetable for a 
fitness function would be a mistake. From a second (and 
perhaps more useful) perspective, we might also identify 
the algorithm’s aim to be to reduce the number of 
unplaced events to zero (as used, for example, by Paechter 
et al. [11]). In our algorithm, because all events are 
assigned to timeslots, this figure needs to reflect the 
minimum number of events that would need to be 
removed in order to bring the number of timeslots down to 
the target amount. It can therefore be calculated by 
working out the number of extra timeslots t' being used in 
a timetable, and then identifying the t' timeslots with the 
least events in them, and totalling them up.  

In this paper, we will use this latter measure to express 
a timetables distance to feasibility. However, we note that 
this distance measure might also present an unfriendly 
search landscape. Consequently we designed and tested 
four further fitness functions for the evolutionary process. 

3.1 Fitness functions for Timetabling 
Let t represent the total number of timeslots currently 
being used in a timetable, t' represent the number of extra 
timeslots being used (i.e. in our case t'=t-45), and let r 
represent the number of rooms available per timeslot. 
Also, let Ei represent the total number of events currently 



assigned to timeslot i, and Di represent the total degree of 
timeslot i (that is, for each event in timeslot i we calculate 
the total number of other events in the entire event set that 
this event clashes with, and Di is the total of all these 
values). Additionally, let Si represent the total number of 
students attending an event in timeslot i. Finally, let d 
represent a timetable’s distance to feasibility (calculated as 
described in section 3). The fitness functions we use are as 
follows. For simplicity’s sake, all are made to be 
maximisation functions:  
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Thus f1 and f2 represent the more obvious fitness functions  
already described, while f3 attempts to combine facets of 
both – trivially, if two timetables have the same number of 
extra timeslots, then the one with the least events in these 
extra ones is probably better (a similar fitness function 
was used for graph colouring in [5]). A careful 
examination of fitness functions f4…6, on the other hand, 
reveals that what they are attempting to do is to place 
more emphasis on promoting timetables that contain good 
packings of events into timeslots. They merely differ in 
the interpretation of what such a packing might be. 
Consequently, f4 tries to encourage timetables that have 
timeslots with high numbers of events in them (similar to 
the fitness function for bin-packing [4]), and f5 (as 
suggested by Erben [3]) prefers timetables that contain 
timeslots with a high total degrees. Finally f6 favours 
timetables that contain timeslots with large numbers of 
students attending some event in them. 

Note also that functions f2 and f3 need to know in 
advance the number of timeslots needed for a timetable to 
be feasible. If this is undefined, the task of calculating the 
minimum number of timeslots needed for a given instance 
is analogous to the problem of calculating the chromatic 
number in graph colouring, which is NP-complete. In the 
test instances we used, we have the benefit of knowledge 
that all instances admit at least one solution using forty-
five timeslots. In certain real-world applications however 
this might be unknown beforehand. 

3.2 Experiments and Observations 
To investigate the effects of the six fitness functions we 
designed simple tests where all algorithm parameters were 
kept the same, identical initial populations for each 
instance were used, and only the fitness functions were 
altered. We used a steady state algorithm with population 
size 50, binary tournament selection, elitist replacement, a 
mutation rate of 3 and recombination rate 1.0. Note then, 
that the only actual difference between each trial is the 
criteria used for (1) choosing tournament winners and (2) 
picking the individuals to replace. Note also that the costs 
of the scoring functions are roughly equivalent, as all 
require just one parse of the timetable. The test instances 

used comprise three sets of twenty instances with the 
numbers of events approximately 200, 400 and 1000 for 
the small, medium and large sets respectively. (These can 
be downloaded at [17].) 

Figure 3 shows an example of how the various fitness 
functions cause the algorithm to behave over time. For the 
first 200 or so seconds, f2 shows the quickest movement 
through the search space but as time progresses, we see 
that f5, f6 and, to a lesser extent f3 seem to move ahead of 
the field. The probable reason for this is because at the 
beginning of the run the population is very diverse and so 
it is quite easy to pick out the better timetables by looking 
directly at the distance to feasibility (which is what and f2 
does). However, a point is reached (here at around 200 
seconds) where the timetables in the population start to 
look too similar with regards to f2’s criteria and we are not 
able to effectively distinguish between them anymore. In 
this case much of the selection pressure is lost and indeed, 
other criteria has to be looked at in order to guide the 
search. This is when f5, f6 and f3 begin to show their 
strengths - they are able to distinguish between timetables 
using the same number of timeslots or with the same 
distance to feasibility, and go on to give a more effective 
search. 

We also note that fitness function f4 showed slightly 
disappointing performances. Thus, it would seem that 
exclusively identifying a good timeslot as one with lots of 
events in it is an oversimplification that does not really aid 
the search in a satisfactory manner. 
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Figure 3. Effects of the six fitness functions over time with 
the medium instances. As with figures 4, 5, and 8, each line 
represents the distance to feasibility of the best solution in 
the population, averaged across the instance set. 

Next, we look at the performance of the algorithm with 
respect to the number of evaluations performed. This sort 
of performance measure is valid with timetabling because 
it could be the case that in some applications the 
evaluation function is the most expensive operation in the 
algorithm, particularly when dealing with soft constraints. 
(Consider, for example, an evaluation function that needs 
to analyse the timetables of every individual student.) 
With this performance measure, we see a similar pattern  



emerging: as figure 4 shows, for the first 15,000 or so 
evaluations f2, and then f3 show the quickest movements, 
but as the same run is allowed to continue, f5  (and to a 
lesser extent f6 and f3) go on to find the best results with f1, 
f2 and f4 eventually producing the worst. 

Table 1 also shows some interesting observations of 
these experiments. As can be seen, when using fitness 
functions f4, f5 and f6, runs of 100,000 evaluations took 
considerably less time than runs with the other three 
fitness functions. Our experiments have led us to believe 
that this is due to the fitness functions’ effects on 
population diversities during the evolutionary process. As 
we have already noted in section 2, when a population is 
diverse, the amount of rebuilding that needs to be done 
during recombination generally increases, making the 
entire operation more expensive. Secondly, we have also 
seen that certain fitness functions seem to reach a point 
earlier than others where they cannot differentiate 
effectively between different timetables, causing a 
reduction or even a cancelling-out altogether of selection 
pressure. When this sort of transition occurs, obviously 
there will be less of a push towards convergence and this 
will cause the recombination operator to remain more 
expensive for a greater period of the run. 
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Figure 4. Effects of the six fitness functions Vs number of 
evaluations with the medium instances.  

 f1 f2 f3 f4 f5 f6 
Small 241 195 189 171 164 167 
Med 2335 959 914 751 738 716 
Large 22872 43242 21040 10102 9524 9349 

Table 1. Mean time (secs) taken for runs of 100,000 evals. 
with the six fitness functions. 

Note that an overly rapid loss of diversity may sometimes 
be undesirable in an EA as it can lead to a redundancy of 
the recombination operator and an under-sampling of the 
search space. However, in the case of this algorithm there 
is clearly another trade-off because, as already noted, 
recombination is generally more expensive when the 
population is diverse. With the small and medium 
instances, the balance seemed to fall in favour of using f5 

and f6 which, even though exhibiting tendencies to cause a 
more rapid loss of diversity, still returned superior results 
and in less time. 
 Interestingly, as can be viewed in figure 5, a different 
behaviour is seen with the large instances. Here, there is 
not only a dismal performance of f1 and f4, but better 
results (after 100,000 evaluations) clearly come from f2 
and f3. In this case, it would seem that the trade-off has 
fallen the other way, and that the sustained diversity due to 
f2 and f3 has allowed better solutions to be found. 
However, these come at a price; a second glance at table 1 
reveals that the runs on average took over twice as long in 
the case of f3 (compared to f4, f5, and f6) and over four 
times as long in the case of f2.  
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Figure 5. Effects of the six fitness functions Vs number of 
evaluations with the large instances. 

4 The Effects of Stochastic Local-search 

It is generally accepted that evolutionary algorithms are 
very good at coarse-grained global search but are rather 
poor at fine-grained local-search [14]. Indeed, as the 
population starts to converge, so the effects of crossover 
usually lessen until, generally only the mutation operator 
offers further movements. It is therefore perfectly 
legitimate and increasingly common (see, for example, 
[10]) to attempt to enhance an EA by adding some sort of 
local-search procedure (this is sometimes called a memetic 
algorithm [18]). Thus, a successful marriage can be 
formed whereby the EA helps move the search into 
promising regions of the search space, with a local-search 
method then being utilised to explore within these regions.  

Figure 6 outlines our local-search operator – taking a 
list of unplaced events U and a partial timetable tt, it goes 
about trying to insert any event from U into any 
unoccupied, feasible place in tt. If there is no such place, 
then the events inside tt are randomly shuffled and the 
process is repeated until either all the events in U have 
been placed or a cut-off point is reached. For our 
experiments, we decided that this cut-off point should be 
in some way proportional to the instance size. It is 



therefore expressed by the parameter limit so that the 
operation is forced to stop when (limit × e) iterations of 
local-search have taken place (where e is the total number 
of events in the particular instance being addressed).  

Note that this procedure will do two important things. 
Firstly, if successful, events from U will added to the 
timetable tt, thereby improving (on average) the timeslot 
packings, and possibly reducing the number of extra 
timeslots needed to be opened to house the remaining 
events in U. Secondly, because events are randomly 
shuffled amongst the timeslots, extra diversity will be 
added to the population. 

In our experiments, we used the local-search in 
conjunction with the mutation operator: as before, each 
time mutation occurs, a small number of timeslots (and the 
events contained within them) are removed from the 
timetable. Now however, the local-search procedure is 
applied. If at the end of the operation there are still events 
that have not been inserted into the timetable then these 
are dealt with by using the original constructive heuristic 
that, we remember, has the ability to open up extra 
timeslots. 

 

LocalSearch (tt, U, cutOff)                                  .
1.  Make a list V containing all the places in tt 

that have no events assigned to them 
2.  count = 0 
3.  while (U≠∅ and V≠∅ and count<cutOff) 
4.      foreach(u∈U and v∈V) 
5.          if (u can be feasibly put into v in tt) 
6.              Put u into v in tt 
7.              Remove u from U and v from V  
8.      if (U≠∅ and V≠∅) 
9.          done = false 
10.        repeat 
11.            Choose random event e in tt and v∈V 
12.            if(e can be feasibly moved to v in tt) 
13.                Move e to v 
14.                Update V to reflect changes 
15.                done = true 
16.            count++ 
17.        until (count ≥ cutOff or done) 

 

Figure 6. The local-search procedure 

4.1 Observations 
From a practical standpoint, if we are to asses whether the 
additional local-search operator is worth using at all, then 
analysing the algorithm’s behaviour with respect to the 
number of evaluations performed is fairly meaningless as 
more computation will be being performed for each new 
individual. This means that any experiments must now 
only be measured with regards to CPU time.  

In order to gauge the effects, benefits, and drawbacks 
of the new operator we performed trial runs using eleven 
different recombination rates (between 0.0 and 1.0), 
eleven different settings for limit (between 0 and 20) and 
twelve different population sizes (between 2 and 50) on all 

sixty instances. As in [7], time limits of 30, 200 and 800 
seconds were imposed for the small, medium and large 
instance sets respectively. Lastly, fitness function f5 from 
the previous section was used. 

The first thing that we noticed from these experiments 
was the huge effect that the local-search had on the 
number of new individuals produced within the time limit. 
This is illustrated, for two population sizes, in figure 7. 
Here, we see that the use of local-search, even in small 
amounts, causes far fewer individuals to be produced 
within the time limits. We believe that this is almost 
exclusively to do with the fact that the local-search 
operator, by adding diversity to the population, keeps the 
recombination operator consistently expensive throughout 
the run. 
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Figure 7. Effects that the local-search operator has on the 
number evaluations performed within the time limit (using 
recombination rate 0.5).  

We also saw a different response to the parameter settings 
when dealing with the various instance sets. For the 
medium instances, the top ten results (on average across 
the set) all came when using fairly small populations (5 to 
15 individuals), with high levels of recombination 
(between 0.6 and 0.9), and small, but still significant, 
levels of local-search (in all cases this was limit = 2). With 
the medium instances then, it would seem that both the 
recombination operator and the local-search are integral to 
the overall search. Additionally, it also seems reasonable 
to assume that the smaller populations give the most 
successful runs because the overall potential for diversity 
is reduced (therefore allowing more individuals to be 
produced within the time limit) but yet is still kept at high 
enough levels by the local-search operator.  

In contrast, with the large instances we saw the best 
results being achieved when using bigger populations (30 
to 50 individuals), with low recombination rates (0.0 or 
0.1), and little or no local-search (limit = 0 or 1). We can 
only conclude that, in this case, whilst the larger 
populations help to ensure that more regions of the search 
space are sampled, recombination is simply too costly to 
provide enough evolution within the imposed (but still 



fair) time limit. Thus using it in small amounts or indeed 
not at all seems the more promising strategy. 

There was no immediate pattern concerning the results 
of the experiments with the small instances. In many cases 
the algorithm was able to find a solution in over 80% of 
the trials. This means that the algorithm probably just 
finds this instance set too easy, making it difficult to glean 
any further insights. 

Finally, figure 8 shows some example runs illustrating 
the effects of various parameter settings with the medium 
instances. As can be seen, in this case the best final results 
seem to come when we use a suitable balance of both 
local-search (limit=2) and recombination (rate=0.7). 
However, we also see that the quickest positive 
movements through the search space (at least for the first 
50 or so seconds) actually come when we use no 
recombination or local-search at all. After this point the 
run then stagnates. It therefore seems reasonable to 
investigate if better overall performance can be gained if 
recombination and local-search are only introduced once 
the runs using only mutation start to level off. 
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Figure 8. Contrasting the behaviour of the algorithm with 
different parameter settings using populations of size 10 and 
the medium instances. Meanings of (#) and (*) are explained 
in the text. 

This is exactly what is done at around the mark (*) on 
figure 8. Here, we added an additional operator that 
sensed when the runs’ progress started to fade, and then 
increased the amount of local-search from limit=0 to 
limit=2, and the amount of recombination from a rate 0.0 
to a rate 0.5. This was done in the hope that the new 
operators would then take the search further towards a 
solution. However as the line marked (#) in figure 8 
indicates, the benefits of doing this are marginal to say the 
least. This suggests that for local-search to be given a real 
opportunity to improve results, it needs to be used from 
early on in the search. 

5 Conclusions 

We conclude this paper with the following points: 

• We have discussed a way to go about measuring 
population diversity with the standard GGA 
representation and discovered, in our case, that this 
diversity has a very close correlation with the average 
cost of the recombination operator; i.e. if the 
population is diverse, and recombination is being 
used, the rate at which new individuals are formed 
(per time unit) will usually fall. 

• We have seen that the choice of fitness function for 
this problem can have a large effect both on the 
overall solution quality and the algorithm’s time 
requirements. In particular, the latter seems almost 
exclusively due to the effects that the fitness functions 
have on the diversity of the population. We have also 
seen that diferent fittness fuctions can be beneficial at 
different stages of the runs. Future work could show 
that even more superior results might be found by 
using different fitness criteria at different points of the 
run or indeed, by using some sort of sequential 
evaluation [11].  

• We have seen, through a substantial number of 
experiments, that our stochastic local-search operator 
can improve the search, but should probably be used 
with some care. Indeed, even when used in small 
levels, whilst allowing the possibility of further 
improvement to the timetables, it can also drastically 
increase and sustain population diversity throughout 
the run causing the recombination operation to be just 
too expensive. This might mean that just not enough 
new individuals are produced within reasonable time. 
In some situations this problem can be remedied, to a 
certain extent, by using smaller populations. 

• As often noted in this paper, the algorithm seems to 
behave in different ways with different sized 
instances; whilst performing extremely well with the 
small instances and also promisingly with the medium 
instances, it seems to consistently underachieve when 
dealing with the large instances. In particular, during 
runs with these, the overall fitness of the populations 
did not seem to improve anywhere near as much as 
should be expected (refer to the y-axis of figure 5). A 
possible explanation for this is the fact that, in our 
case, we are always interested in finding timetables 
with forty-five timeslots but the number of events is 
variable. Thus, as the instance size is increased, the 
number of rooms being used needs to increase and not 
the number of timeslots. Therefore the genetic 
operators function on chromosomes whose lengths 
will remain more or less constant regardless of 
instance size! Clearly this presents a scalability issue, 
and we may start to see further unsatisfactory 
movement through the search space if instance size is 
further increased (as is common in practical 
timetabling [11]). 

Note that all of these points above may actually extend 
beyond the application discussed here and could even turn 
out to apply to the general GGA model as a whole. 
However, verification of this conjecture awaits further 
research. 
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