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Problem I: Post Enrollment Timetabling

• This problem has been the subject of a few international competitions

• We need to assign a set of “events” (lectures, etc.) to “timeslots” and rooms

• Each event has a list of attending students

• Hard Constraints
– No double booking of rooms or students

– Some events should occur before / after others

– Some timeslots are forbidden for certain events

– Events should only be assigned to suitable rooms with adequate seating

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4



Relationship to Graph Colouring

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

e1

e2

e3

e4

e5

e8 e6 e7

= “cannot be put into 

the same timeslot” 

(e.g. student clash)

• The problem generalises a graph colouring problem



Stage 1: Finding Feasibility

Strategy: 

• Using heuristics, insert as many events as possible into the timetable such that the 
hard constraints are obeyed. 

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full 
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

U = {e9, e10, e11}
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Stage 1: Finding Feasibility

Strategy: 

• Using heuristics, insert as many events as possible into the timetable such that the 
hard constraints are obeyed. 

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full 
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e11

U = {e9, e10, e2, e8}



Room Allocations via maximum matching

• Extra flexibility is also offered if we treat room allocation as a maximum bipartite 
matching problem
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Room 2 e4 e6 e7

Room 3 e3

Room 4 e11
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Room 1

Room 2

Room 3

Room 4

e3

e11
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Room Allocations via maximum matching

• Extra flexibility is also offered if we treat room allocation as a maximum bipartite 
matching problem

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e8

U = {e9, e10, e2}

Room 1

Room 2

Room 3

Room 4

e3

e11

e8



Stage 2: Eliminating Soft Constraint Violations

Strategy:

• Once feasibility is achieved, we now explore the space of feasible solutions, 

seeking to minimise a cost that reflects the number of soft constraint violations.

• This can be achieved by applying neighborhood moves, but rejecting them if they 

violate a hard constraint

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move 
from one solution to another



Feasibility Ratio

• The connectivity of the solution space is very important, though it is usually 

too large to formally measure

• An indication can be gained using the Feasibility Ratio, which is the 

proportion of tested neighbourhood moves that are seen to retain feasibility 

(whether accepted or not). 

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move 
from one solution to another



Neighbourhood Operators

• Five neighbourhood operators N1,…,N5 were designed. Each one is an extension of 
the previous one and should therefore increase the feasibility ratio:

• N1: Choose an event and move it to a new timeslot

OR

Choose two events and swap their timeslots

• N2: As with N1, but apply a maximum matching algorithm to reallocate rooms if

necessary.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5 e9

Room 2 e4 e6 e7

Room 3 e3 e2 e10

Room 4 e8



Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j. 

• Form a connected 
subgraph containing this 
vertex and any others with 
colours i and j. 

• Swap the colours of the 
vertices

This interchange of colours is 
guaranteed to retain 
feasibility.



Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j. 

• Form a connected 
subgraph containing this 
vertex and any others with 
colours i and j. 

• Swap the colours of the 
vertices

This interchange of colours is 
guaranteed to retain 
feasibility.



Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j. 

• Form a connected 
subgraph containing this 
vertex and any others with 
colours i and j. 

• Swap the colours of the 
vertices

This interchange of colours is 
guaranteed to retain 
feasibility.



e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e1

e2

e3

e4

e6

e7

e8

e9

e10

e11 e5

(a) (b)

e1
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e8
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e11 e5

(c)

Room 1

Room 2

Room 3

Room 4

Room 5

Room 6

Timeslot 
A              B

Timeslot 
A              B

Timeslot 
A              B

More Neighbourhood Operators…

N3: Perform a Kempe chain interchange, and use a maximum matching algorithm 
for room allocations. ((a) and (b) above).

N4 and N5: As with N3, but perform multiple Kempe chain interchanges if a single 
Kempe chain is seen to violate the constraints regarding room 

allocation ((a) and (c) above).



Yet More Neighbourhood Operators…

• We can also create additional dummy rooms to increase the feasibility ratio. 

• However, use of dummy rooms must be discouraged via additional penalties in the 
cost function.

• A neighbourhood operator used with x dummy rooms is denoted Ni
(x)

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5 e9

Room 2 e4 e6 e7

Room 3 e10

Room 4 e8

Dummy Room e2

Dummy Room e3
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Simulated Annealing and Tabu Search 

• In general, for this problem SA seems better at finding good solutions in the 

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further 

reducing connectivity…

• Tabu Search…

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move 
from one solution to another
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Simulated Annealing and Tabu Search 

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move 
from one solution to another

1.0

0.05 0.3

• In general, for this problem SA seems better at finding good solutions in the 

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further 

reducing connectivity…

• Tabu Search…



Simulated Annealing: One-Stage Vs Two-Stage

• An alternative approach is to consider the larger space of feasible and infeasible 
solutions, and then apply SA using a weighted cost function 

• However, do one-stage approaches benefit from the existence of a zero-cost 
solution?

• In other words, by moving towards solutions with few soft constraint violations, do 
they also happen to move towards feasible regions of the search space too?

Perfect Solution 
Known to Exist

Perfect Solution 
not Known to Exist

Two Stage SA (this 
method)

4.5 21

One Stage SA with 
weighted cost function*

12.5 2

Number of instances (out of 40) where each method outperforms the other. 
*Ceschia, et al. (2012) “Design, engineering, and experimental analysis of a simulated annealing approach to the post-

enrolment course timetabling problem”. Computers and Operational Research, 39:1615–1624



Summary on the Timetabling Problem

• Better results can be achieved for this problem if we improve the feasibility 

ratio.

• Suitable neighborhood operators can be formulated by making note of the 

underlying structures of the problem.

• SA seems to be a successful methodology for this problem. In our method the 

only parameters needed are 

– End temperature

– Time Limit
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Problem II: School Bus Transport



School Bus Transport

The Current Procedure…

1) Organised by local government

2) For each school a list of eligible addresses is 

compiled

3) A set of suitable bus routes are created to 

serve all qualifying students. 

4) Bus companies then bid for the contracts. 

• Yearly contract for a 70-seat bus typically 

GBP£25,000 to £35,000, 

• Costs can increase for longer journeys and 

for routes requiring a chaperone



Problem Description

Constraints…

1) Bus journeys should not be too 

long (<45 mins)

2) Stops should within walking 

distance from home (<1 mile)

Features…

1) Minimise the number of buses / 

routes

2) Use a subset of stops

3) Multi-stops are permitted

4) Boarding the bus takes time

Bus Stop

Address



Problem Description

Bus Stop

Address

Constraints…

1) Bus journeys should not be too 

long (<45 mins)

2) Stops should within walking 

distance from home (<1 mile)

Features…

1) Minimise the number of buses / 

routes

2) Use a subset of stops

3) Multi-stops are permitted

4) Boarding the bus takes time



Problem Description

Bus Stop

Address

A Feasible Solution…

1) All addresses must have a 

serviced bus stop within walking 

distance

2) Journeys do not exceed the 

maximum time limit

3) Number of students boarding 

does not exceed maximum bus 

capacity



Allocating students to routes/buses

Students are allocated to the closest stops 

being used

This results in a relaxed bin packing problem.

Splitting an “item” results in a multi-stop

Stop 1, 50 students

Stop 2, 30 students

Stop 3, 20 students

Stop 4, 10 students

(Bus Capacity = 40)

1

2 3

4

1

Bus 1 Bus 2 Bus 3

1

2 3

4

Stop 1        Stop 2        Stop 3        Stop 4



Selecting the subset of stops

Bus Stop

Address

Let S be the set whose elements 

correspond to the addresses within 

walking distance of each bus stop:

All addresses in a feasible solution 

must be served by a bus stop; 

Hence the task of choosing a 

suitable subset of stops is a set 

covering problem using S and the 

set of stops.



Selecting the subset of stops

Bus Stop

Address

Let S be the set whose elements 

correspond to the addresses within 

walking distance of each bus stop:

All addresses in a feasible solution 

must be served by a bus stop; 

Hence the task of choosing a 

suitable subset of stops is a set 

covering problem using S and the 

set of stops.

Theorem
Assuming 

• the triangle inequality, and 

• multistops are not permitted, 

the optimal solution corresponds to 

a minimal set covering



Algorithm Strategy

For a fixed number of vehicles k…
1) Create a minimal covering of stops, assign all 

passengers to stops, and all stops to vehicles.

2) Use a local search operator to shorten the resultant 

routes.

3) Use the current solution to determine a new 

minimal covering of stops and repair the solution.

4) Return to 2) OR increase k and return to 1)

Only consider feasible solutions, but allow long 

routes.

Then seek to shorten the routes to below the 

required time limit



u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 v2 v3 u6 u7

v1 u5 u4 u3 v4 v5 v6

R1 = 

R2 = 

R1 = 

R2 = 

u1 u2 u3 u4 u5 u6 u7R = u1 u5 u6 u2 u3 u4 u7R = 

Local Search Operators

Inter-route Operators

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 u6 u7

v1 u5 u4 u3 v2 v3 v4 v5 v6

R1 = 

R2 = 

R1 = 

R2 = 

Intra-route Operators

+ 2-opt and swaps

Section Swap

Section Insert

Extended Or-Opt

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6 v1 u3 v2 v3 v4 v5 v6

R1 = 

R2 = 

R1 = 

R2 = 

Create Multi-stop

u1 u2 u3 u4 u5 u6 u7



Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and 

deselect them.

2. Add new stops to ensure all 

passengers are served. 

(Ensuring the subset is still 

minimal).

3. Repair the routes and passenger 

allocations to reflect the 

changes
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Random Instance Generation

Bus Stop

Address

Put a school at the 

centre of a circle…

1) Add stops anywhere in 

the circle

2) Now add addresses 

that are
A. Within walking distance of 

a stop

B. Not too close to the school.

3) Finally, remove any 

stops with no address 

within waking distance



Random Instance Generation

Put a school at the 

centre of a circle…

1) Add stops anywhere in 

the circle

2) Now add addresses 

that are
A. Within walking distance of 

a stop

B. Not too close to the school.

3) Finally, remove any 

stops with no address 

within waking distance

Bus Stop

Address
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Results with Random Graphs

Extra vehicles (routes) required for random graphs with 1,000 students using 70-seat buses. 

All instances used a 15-mile radius circle, with buses travelling along straight lines at 30mph; 

hence, all bus stops are within 30 minutes of the school.

25 stops 50 stops

100 stops 250 stops



Summary and Discussion

• The lower bound on the number of vehicles

lower bound =
number of students

bus capacity

is usually achieved quickly (for random and real-world instances)

• In real-world problems, use of minimal coverings seems to result in overly long 

walks

• We must also consider the multi-objective nature of the problem

• www.rhydlewis.eu/bus

http://www.rhydlewis.eu/bus
http://www.rhydlewis.eu/sbrp
http://www.rhydlewis.eu/sbrp
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