
Two Example Optimisation Problems from the

World of Education

Rhyd Lewis
School of Mathematics, Cardiff University,

LewisR9@cf.ac.uk, www.RhydLewis.eu

Lewis, R. and J. Thompson (2015) 'Analysing the Effects of Solution Space Connectivity with an Effective Metaheuristic for the
Course Timetabling Problem'. European Journal of Operational Research, vol. 240, pp. 637-648.

Lewis, R., K. Smith-Miles, and K. Phillips (2018) 'The School Bus Routing Problem: An Analysis and Algorithm'. In Combinatorial
Algorithms (LNCS 10765), Springer, pp. 287-298.

mailto:LewisR9@cf.ac.uk
http://www.rhydlewis.eu/
http://rhydlewis.eu/papers/EJOR-TT-RLJT.pdf
http://rhydlewis.eu/papers/IWOCA2017.pdf

Problem I: Post Enrollment Timetabling

• This problem has been the subject of a few international competitions

• We need to assign a set of “events” (lectures, etc.) to “timeslots” and rooms

• Each event has a list of attending students

• Hard Constraints
– No double booking of rooms or students

– Some events should occur before / after others

– Some timeslots are forbidden for certain events

– Events should only be assigned to suitable rooms with adequate seating

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

Relationship to Graph Colouring

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

e1

e2

e3

e4

e5

e8 e6 e7

= “cannot be put into

the same timeslot”

(e.g. student clash)

• The problem generalises a graph colouring problem

Stage 1: Finding Feasibility

Strategy:

• Using heuristics, insert as many events as possible into the timetable such that the
hard constraints are obeyed.

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

U = {e9, e10, e11}

Stage 1: Finding Feasibility

Strategy:

• Using heuristics, insert as many events as possible into the timetable such that the
hard constraints are obeyed.

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4

U = {e9, e10, e11}

Stage 1: Finding Feasibility

Strategy:

• Using heuristics, insert as many events as possible into the timetable such that the
hard constraints are obeyed.

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4 e11

U = {e9, e10 }

Stage 1: Finding Feasibility

Strategy:

• Using heuristics, insert as many events as possible into the timetable such that the
hard constraints are obeyed.

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e2 e4 e6 e7

Room 3 e3 e8

Room 4 e11

U = {e9, e10 }

Stage 1: Finding Feasibility

Strategy:

• Using heuristics, insert as many events as possible into the timetable such that the
hard constraints are obeyed.

• Keep any remaining events in a list U.

• Now make adjustments to the timetable so that U is emptied. This gives a full
feasible timetable.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e11

U = {e9, e10, e2, e8}

Room Allocations via maximum matching

• Extra flexibility is also offered if we treat room allocation as a maximum bipartite
matching problem

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e11

U = {e9, e10, e2, e8}

Room 1

Room 2

Room 3

Room 4

e3

e11

Room Allocations via maximum matching

• Extra flexibility is also offered if we treat room allocation as a maximum bipartite
matching problem

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e11

U = {e9, e10, e2, e8}

Room 1

Room 2

Room 3

Room 4

e3

e11

e8

Room Allocations via maximum matching

• Extra flexibility is also offered if we treat room allocation as a maximum bipartite
matching problem

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5

Room 2 e4 e6 e7

Room 3 e3

Room 4 e8

U = {e9, e10, e2}

Room 1

Room 2

Room 3

Room 4

e3

e11

e8

Stage 2: Eliminating Soft Constraint Violations

Strategy:

• Once feasibility is achieved, we now explore the space of feasible solutions,

seeking to minimise a cost that reflects the number of soft constraint violations.

• This can be achieved by applying neighborhood moves, but rejecting them if they

violate a hard constraint

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

Feasibility Ratio

• The connectivity of the solution space is very important, though it is usually

too large to formally measure

• An indication can be gained using the Feasibility Ratio, which is the

proportion of tested neighbourhood moves that are seen to retain feasibility

(whether accepted or not).

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

Neighbourhood Operators

• Five neighbourhood operators N1,…,N5 were designed. Each one is an extension of
the previous one and should therefore increase the feasibility ratio:

• N1: Choose an event and move it to a new timeslot

OR

Choose two events and swap their timeslots

• N2: As with N1, but apply a maximum matching algorithm to reallocate rooms if

necessary.

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5 e9

Room 2 e4 e6 e7

Room 3 e3 e2 e10

Room 4 e8

Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j.

• Form a connected
subgraph containing this
vertex and any others with
colours i and j.

• Swap the colours of the
vertices

This interchange of colours is
guaranteed to retain
feasibility.

Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j.

• Form a connected
subgraph containing this
vertex and any others with
colours i and j.

• Swap the colours of the
vertices

This interchange of colours is
guaranteed to retain
feasibility.

Kempe Chains in Graph Colouring

Given a feasible colouring,

• Take a vertex of colour i
and a different colour j.

• Form a connected
subgraph containing this
vertex and any others with
colours i and j.

• Swap the colours of the
vertices

This interchange of colours is
guaranteed to retain
feasibility.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e1

e2

e3

e4

e6

e7

e8

e9

e10

e11 e5

(a) (b)

e1

e2

e3

e4

e6

e7

e8

e9

e10

e11 e5

(c)

Room 1

Room 2

Room 3

Room 4

Room 5

Room 6

Timeslot
A B

Timeslot
A B

Timeslot
A B

More Neighbourhood Operators…

N3: Perform a Kempe chain interchange, and use a maximum matching algorithm
for room allocations. ((a) and (b) above).

N4 and N5: As with N3, but perform multiple Kempe chain interchanges if a single
Kempe chain is seen to violate the constraints regarding room

allocation ((a) and (c) above).

Yet More Neighbourhood Operators…

• We can also create additional dummy rooms to increase the feasibility ratio.

• However, use of dummy rooms must be discouraged via additional penalties in the
cost function.

• A neighbourhood operator used with x dummy rooms is denoted Ni
(x)

Time-Slots 1 2 3 4 5 6 7 8 ... 45

Room 1 e1 e11 e5 e9

Room 2 e4 e6 e7

Room 3 e10

Room 4 e8

Dummy Room e2

Dummy Room e3

0

0.02

0.04

0.06

0.08

0.1

0.12

10 22 2 9 1 20 21 13 14 19 24 5 6 15 16 8 18 23 12 7 11 4 3 17

Fe
as

ib
ili

ty
 R

at
io

Instance #

1

2

3

4

100

100+1DR

N1

N2

N3

N4

N5

N5
(1)

Feasibility Ratios in Available Problem Instances

Feasibility ratios for different neighbourhood operators for all 24 problem
instances used in the 2007 International Timetabling Competition. (Taken
from random walks in the solution space)

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4

N1

N2

N5
(1)

N3

N4

N5

End Temperature Tend

R
an

ki
n

g
Sc

o
re

Wins Competition!!!

Performance of a simulated annealing algorithm (using different end
temperatures) with the various neighbourhood operators.

The “Ranking score” is calculated by comparing against all other finalists in the
competition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
ro

p
o

rt
io

n
 R

ed
u

ct
io

n
 In

 C
o

st

Feasibility Ratio

Feasibility Ratio Vs Reduction in Cost using N1 on the 24 available problem
instances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
ro

p
o

rt
io

n
 R

ed
u

ct
io

n
 In

 C
o

st

Feasibility Ratio

Feasibility Ratio Vs Reduction in Cost using N1 and N2 on the 24 available
problem instances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
ro

p
o

rt
io

n
 R

ed
u

ct
io

n
 In

 C
o

st

Feasibility Ratio

Feasibility Ratio Vs Reduction in Cost using N2 on the 24 available problem
instances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
ro

p
o

rt
io

n
 R

ed
u

ct
io

n
 In

 C
o

st

Feasibility Ratio

Feasibility Ratio Vs Reduction in Cost using N2 and N3 on the 24 available
problem instances.

Simulated Annealing and Tabu Search

• In general, for this problem SA seems better at finding good solutions in the

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further

reducing connectivity…

• Tabu Search…

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

Simulated Annealing and Tabu Search

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

• In general, for this problem SA seems better at finding good solutions in the

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further

reducing connectivity…

• Tabu Search…

Simulated Annealing and Tabu Search

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

• In general, for this problem SA seems better at finding good solutions in the

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further

reducing connectivity…

• Tabu Search…

Simulated Annealing and Tabu Search

Space of all feasible solutions. Edges indicate the existence of a neighbourhood move
from one solution to another

1.0

0.05 0.3

• In general, for this problem SA seems better at finding good solutions in the

space of feasible solutions.

• Perhaps this is because tabu search eliminates additional edges, further

reducing connectivity…

• Tabu Search…

Simulated Annealing: One-Stage Vs Two-Stage

• An alternative approach is to consider the larger space of feasible and infeasible
solutions, and then apply SA using a weighted cost function

• However, do one-stage approaches benefit from the existence of a zero-cost
solution?

• In other words, by moving towards solutions with few soft constraint violations, do
they also happen to move towards feasible regions of the search space too?

Perfect Solution
Known to Exist

Perfect Solution
not Known to Exist

Two Stage SA (this
method)

4.5 21

One Stage SA with
weighted cost function*

12.5 2

Number of instances (out of 40) where each method outperforms the other.
*Ceschia, et al. (2012) “Design, engineering, and experimental analysis of a simulated annealing approach to the post-

enrolment course timetabling problem”. Computers and Operational Research, 39:1615–1624

Summary on the Timetabling Problem

• Better results can be achieved for this problem if we improve the feasibility

ratio.

• Suitable neighborhood operators can be formulated by making note of the

underlying structures of the problem.

• SA seems to be a successful methodology for this problem. In our method the

only parameters needed are

– End temperature

– Time Limit

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

P
ro

p
o

rt
io

n
 R

e
d

u
c
ti
o

n
 i
n

 C
o

s
t

Time Limit (s)

N1

N2

N3

Proportion decrease in cost using

differing time limits and differing

neighbourhood operators.

Problem II: School Bus Transport

School Bus Transport

The Current Procedure…

1) Organised by local government

2) For each school a list of eligible addresses is

compiled

3) A set of suitable bus routes are created to

serve all qualifying students.

4) Bus companies then bid for the contracts.

• Yearly contract for a 70-seat bus typically

GBP£25,000 to £35,000,

• Costs can increase for longer journeys and

for routes requiring a chaperone

Problem Description

Constraints…

1) Bus journeys should not be too

long (<45 mins)

2) Stops should within walking

distance from home (<1 mile)

Features…

1) Minimise the number of buses /

routes

2) Use a subset of stops

3) Multi-stops are permitted

4) Boarding the bus takes time

Bus Stop

Address

Problem Description

Bus Stop

Address

Constraints…

1) Bus journeys should not be too

long (<45 mins)

2) Stops should within walking

distance from home (<1 mile)

Features…

1) Minimise the number of buses /

routes

2) Use a subset of stops

3) Multi-stops are permitted

4) Boarding the bus takes time

Problem Description

Bus Stop

Address

A Feasible Solution…

1) All addresses must have a

serviced bus stop within walking

distance

2) Journeys do not exceed the

maximum time limit

3) Number of students boarding

does not exceed maximum bus

capacity

Allocating students to routes/buses

Students are allocated to the closest stops

being used

This results in a relaxed bin packing problem.

Splitting an “item” results in a multi-stop

Stop 1, 50 students

Stop 2, 30 students

Stop 3, 20 students

Stop 4, 10 students

(Bus Capacity = 40)

1

2 3

4

1

Bus 1 Bus 2 Bus 3

1

2 3

4

Stop 1 Stop 2 Stop 3 Stop 4

Selecting the subset of stops

Bus Stop

Address

Let S be the set whose elements

correspond to the addresses within

walking distance of each bus stop:

All addresses in a feasible solution

must be served by a bus stop;

Hence the task of choosing a

suitable subset of stops is a set

covering problem using S and the

set of stops.

Selecting the subset of stops

Bus Stop

Address

Let S be the set whose elements

correspond to the addresses within

walking distance of each bus stop:

All addresses in a feasible solution

must be served by a bus stop;

Hence the task of choosing a

suitable subset of stops is a set

covering problem using S and the

set of stops.

Theorem
Assuming

• the triangle inequality, and

• multistops are not permitted,

the optimal solution corresponds to

a minimal set covering

Algorithm Strategy

For a fixed number of vehicles k…
1) Create a minimal covering of stops, assign all

passengers to stops, and all stops to vehicles.

2) Use a local search operator to shorten the resultant

routes.

3) Use the current solution to determine a new

minimal covering of stops and repair the solution.

4) Return to 2) OR increase k and return to 1)

Only consider feasible solutions, but allow long

routes.

Then seek to shorten the routes to below the

required time limit

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 v2 v3 u6 u7

v1 u5 u4 u3 v4 v5 v6

R1 =

R2 =

R1 =

R2 =

u1 u2 u3 u4 u5 u6 u7R = u1 u5 u6 u2 u3 u4 u7R =

Local Search Operators

Inter-route Operators

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6

u1 u2 u6 u7

v1 u5 u4 u3 v2 v3 v4 v5 v6

R1 =

R2 =

R1 =

R2 =

Intra-route Operators

+ 2-opt and swaps

Section Swap

Section Insert

Extended Or-Opt

u1 u2 u3 u4 u5 u6 u7

v1 v2 v3 v4 v5 v6 v1 u3 v2 v3 v4 v5 v6

R1 =

R2 =

R1 =

R2 =

Create Multi-stop

u1 u2 u3 u4 u5 u6 u7

Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and

deselect them.

2. Add new stops to ensure all

passengers are served.

(Ensuring the subset is still

minimal).

3. Repair the routes and passenger

allocations to reflect the

changes

Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and

deselect them.

2. Add new stops to ensure all

passengers are served.

(Ensuring the subset is still

minimal).

3. Repair the routes and passenger

allocations to reflect the

changes

Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and

deselect them.

2. Add new stops to ensure all

passengers are served.

(Ensuring the subset is still

minimal).

3. Repair the routes and passenger

allocations to reflect the

changes

Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and

deselect them.

2. Add new stops to ensure all

passengers are served.

(Ensuring the subset is still

minimal).

3. Repair the routes and passenger

allocations to reflect the

changes

Generating a new minimal subset of stops

Bus Stop

Address

1. Take a small number of non-

compulsory serviced stops and

deselect them.

2. Add new stops to ensure all

passengers are served.

(Ensuring the subset is still

minimal).

3. Repair the routes and passenger

allocations to reflect the

changes

Random Instance Generation

Bus Stop

Address

Put a school at the

centre of a circle…

1) Add stops anywhere in

the circle

2) Now add addresses

that are
A. Within walking distance of

a stop

B. Not too close to the school.

3) Finally, remove any

stops with no address

within waking distance

Random Instance Generation

Put a school at the

centre of a circle…

1) Add stops anywhere in

the circle

2) Now add addresses

that are
A. Within walking distance of

a stop

B. Not too close to the school.

3) Finally, remove any

stops with no address

within waking distance

Bus Stop

Address

0.1

1.1

2.1
3.1

4.1

0

5

10

15

20

25

35
60

85

E
x
tr

a
 R

o
u

te
s

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

E
x
tr

a
 R

o
u

te
s

0.1

1.1

2.1

3.1
4.1

0

5

10

15

20

25

35
60

85

E
x
tr

a
 R

o
u
te

s

0.1

1.1

2.1
3.1

4.1

0

5

10

15

20

25

35
60

85

E
x
tr

a
 R

o
u

te
s

Maximum walking
distance (miles)

Maximum drive
time (mins)

Results with Random Graphs

Extra vehicles (routes) required for random graphs with 1,000 students using 70-seat buses.

All instances used a 15-mile radius circle, with buses travelling along straight lines at 30mph;

hence, all bus stops are within 30 minutes of the school.

25 stops 50 stops

100 stops 250 stops

Summary and Discussion

• The lower bound on the number of vehicles

lower bound =
number of students

bus capacity

is usually achieved quickly (for random and real-world instances)

• In real-world problems, use of minimal coverings seems to result in overly long

walks

• We must also consider the multi-objective nature of the problem

• www.rhydlewis.eu/bus

http://www.rhydlewis.eu/bus
http://www.rhydlewis.eu/sbrp
http://www.rhydlewis.eu/sbrp

Two Example Optimisation Problems from the

World of Education

Rhyd Lewis
School of Mathematics, Cardiff University,

LewisR9@cf.ac.uk, www.RhydLewis.eu

Lewis, R. and J. Thompson (2015) 'Analysing the Effects of Solution Space Connectivity with an Effective Metaheuristic for the
Course Timetabling Problem'. European Journal of Operational Research, vol. 240, pp. 637-648.

Lewis, R., K. Smith-Miles, and K. Phillips (2018) 'The School Bus Routing Problem: An Analysis and Algorithm'. In Combinatorial
Algorithms (LNCS 10765), Springer, pp. 287-298.

mailto:LewisR9@cf.ac.uk
http://www.rhydlewis.eu/
http://rhydlewis.eu/papers/EJOR-TT-RLJT.pdf
http://rhydlewis.eu/papers/IWOCA2017.pdf

